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This study dealt with the flutter and biaxial buckling of composite sandwich panels based on a higher 
order theory. The formulation was based on an enhanced higher order sandwich panel theory in which 
the vertical displacement component of the face sheets were assumed as quadratic  while a cubic pattern 
was used for the in-plane displacement components of the face sheets and the all displacement 
components of the core. The transverse normal stress in the face sheets and the in-plane stresses in the 
core were considered. For the first time, the continuity conditions of the displacements, transverse shear 
and normal stress at the layer interfaces, as well as the conditions of zero transverse shear stresses on 
the upper and lower surfaces of the sandwich panel are simultaneously satisfied. The aerodynamic 
loading was obtained by the first-order piston theory. The equations of motion and boundary conditions 
were derived via the Hamilton principle. Moreover, effects of some important parameters like lay-up of 
the face sheets, length to width ratio, length to panel thickness ratio, thickness ratio of the face sheets to 
panel, fiber angle, elastic modulus ratio and thickness ratio of the face sheets on the stability boundaries 
were investigated. The results were validated by those published in the literature. The results revealed 
that by increasing length to width ratio, length to panel thickness ratio and elastic modulus ratio of the 
face sheets, the stability boundaries were decreased and the largest nondimensional buckling loads 
occurred at the angle ply sandwich panel.  
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Table 1 Assumption of the present research 
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Fig. 1 Schematic of a sandwich panel under supersonic flow 
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Table 2 Material properties of a composite sandwich panel 

= = = 0.1036 GPa, = = = 0.05 GPa, 
= 0.32, = 130 kg m  

 

= 24.51 GPa, = = 7.77 GPa, = = 3.34 GPa, 
= 1.34 GPa, = = 0.078, = 0.49, 

= 1800 kg m  
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Table  3 Comparing dimensionless natural frequencies of a composite 
sandwich panel with cross ply lay-up 

 
(m, n)       

   HSDT-ESL  

(1, 1)  14.05 14.27 14.74 15.28 
(1, 2) 25.88 26.31 26.83 28.69 
(2, 1) 26.52 27.04 27.53 30.01 
(2, 2) 34.32 34.95 35.60 38.86 
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Table  4 Comparing dimensionless natural frequencies of a composite 
sandwich panel with angle ply lay-up 

        
  15.32 15.53 16.09 
 27.09 27.36 28.93 
 27.09 27.36 28.93 

 36.26 36.93 38.76 

1 Mixed layerwise theory 
2 Higher order shear deformation theory 

5  
Table  5 Material properties of a composite sandwich panel with 
honeycomb core 

 = , = , = . , = . , 
= = . , = . . 

 = 3.2 × 10 , = 2.9 × 10 = 0.4, 
= 7.9 × 10 , = 6.6 × 10 , 

= 0.99, = = 3 × 10 . 

6   
Table  6 Comparing the dimensionless buckling load of the laminated 
sandwich panel with honeycomb core 

ht / h 
 a / h 0.150 0.100 0.075 0.050 0.025 

cr=Ncr b2 / (E2t h3) 
6.696 5.704 4.852 3.742 2.210  

10  

- 5.672 4.831 3.739 2.208 3 
7.010  5.710 4.864 3.750 2.212 HSDT 
8.575 6.493 5.265 3.866 2.204 FSDT 
6.680 5.562 4.785 3.740 2.259  
6.755 5.626 4.830 3.765 2.264 MLW 
10.329 7.941 6.449 4.665 2.554  

20  

- 7.935 6.440 4.646 2.553 3 
10.341  7.951 6.453 4.676 2.554 HSDT 
11.102 8.298 6.616 4.713 2.544 FSDT 
10.221 7.932 6.460 4.713 2.588  
10.216 7.919 6.443 4.703 2.566 MLW 
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7   
Table 7 Material properties of a composite panel 

= 68.948 GPa, = = 6.895 GPa, = = 2.275 GPa, 
= 1.034 GPa, = = = 0.3 

8   
Table  8 Comparing the critical dynamic pressure for the laminated 
panel 

a/b a/h cr= a a3 / D11(0) 

[-45/45/-45/45] [0/90/0/90] 

     
1 10 151.5 160.60 - 39.2 44.75 

100 206.1 - 222.7 52.7 54.6 
2 10 266.6 282.25 - 52.9 58.39 

100 645.9 684.06 - 136.3 141.88 

9  
Table 9 Material properties of a composite sandwich panel

 
 

 = = = . , = = = . , 
= . , =  

 = 131 GPa, = = 10.34 GPa, = = 6.895 GPa, 
= 6.205 GPa, = = 0.22, = 0.49, 

= 1627 kg m  
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Fig.  3 Variation of dimensionless buckling load with the length to 
width ratio 

 3  

 

Fig. 2 Variation of dimensionless buckling load with the length to 
panel thickness ratio 
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Fig. 4 Variation of dimensionless buckling load with the fiber angle 
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Fig.  5 Variation of damping ( ) with the dimensionless critical 
dynamic pressure for = 3 
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Fig.  6 Variation of dimensionless critical dynamic pressure with the 
elastic modulus ratio of the face sheets 
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Fig.  7 Variation of dimensionless critical dynamic pressure with the 
face sheets to the core elastic modulus ratio 

 7  

10   
Table 10 Material properties of a sandwich panel

 
 

 = = = , = = = , 
= . , =  

  = 131 GPa, = = 10.34 GPa, 
= = 6.895 GPa, = 6.205 GPa, 
= = 0.22, = 0.49, = 1627 kg m  

 

= = = 70 GPa, = = = 26 GPa, 
= 0.3, = 2700 kg m

 

 = = = 210 GPa, = = = 77 GPa, 
= 0.3, = 7800 kg m  

 

Fig.  8 Variation of dimensionless critical dynamic pressure with the 
thickness ratio of the top to the bottom face sheets  

 8   
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 .10   
9  

 . 

  

Fig.  9 Variation of dimensionless critical dynamic pressure with the 
thickness ratio of the bottom to the top face sheets 
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