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 Roughness of vanes’ outer surface and that of cooling channels’ inner surface have considerable impact 
on temperature distribution. Using a rougher surface leads to increased turbulence in near-surface flows 
and increases the rate of heat transfer. In this study, vane of a C3X turbine cooled via 10 cooling 
channels was simulated -three-dimensionally- by ANSYS-CFX software based on SST turbulence 
model, and then the effects of roughness of said surfaces were examined. The results showed that 
increasing the roughness of the blade’s outer surface, which absorbs the heat of the hot fluid, to values 
below the threshold of fully rough regime ( Reks < 70 ) makes no significant impact on vane’s surface 
temperature distribution; but increasing the roughness to values higher than this threshold leads to 8% 
increase in surface temperature. This indicates that outer surface of the blade should always exhibit a 
transitionally rough regime. Contrary to the outer surface, increasing the roughness of cooling channels’ 
inner surface, which transfers the heat to the cooling fluid, has been found to be the very beneficial, as 
even a slight increase in the roughness of this surface (within the domain of transitionally rough) 
decreases the blade’s surface temperature by up to 8%, and improves the hydraulic-thermal performance 
factor by about 250%. 
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Fig. 1 C3X test section 
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Fig. 2 Numerical domain around vane 
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Table 1 mainstream flow conditions 

  
(P0) [kPa] 321.71 
(T0) [K]  783 
(M1) 0.17 

(Re1) 530000 
(Tu) 8.3% 

(M2) 0.90 
(Re2) 2010000 

(Ps2) [kPa] 190.20 

(Tw/T0) 0.84 

2  
Table 2 mainstream flow conditions 

 
(gr/sec) 

×10-4 
(K) 

(K) 
 

1 7.79 6.787 409 406 0.039 
2 6.58 5.734 409 402 0.040 

3 6.34 5.704 391 383 0.040 

4 6.66 5.924 397 390 0.040 

5 6.52 6.025 376 367 0.040 

6 6.72 5.608 434 429 0.040 

7 6.33 5.691 391 381 0.040 

8 2.26 3.992 407 391 0.042 
9 1.38 2.210 466 446 0.045 
10 0.68 1.611 516 494 0.048 

1 Sutherland 
2 Stainless steel 
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Fig. 3 Section in the grid at the vane leading edge 
3  

 

Fig. 4 Section in the grid at the vane trailing edge 
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Fig. 5 Predicted and measured vane pressure loading 
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Fig. 6 Predicted  vane surface temperature with three different grid 
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Fig. 7 Temperature distributions in midspan with external smooth and 
rough surfaces 

7   

Fig. 8 Temperature distributions of the blade in midspan with smooth 
channels and rough channels 
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Fig. 9 Contours of temperature at vane midspan with rough channels 
a:10, b:25, c:50, d:100 µm 

9 a:10, b:25, c:50, d:100µm  
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Table 3 Mean heat transfer coefficient for smooth and rough channels 

 

(W/m2·K) 

 
10 25  50 100 

1 575 685 831 1296 1691 
2 512 568 735 929 1477 
3 491 551 698 901 1445 
4 515 571 750 939 1502 
5 489 550 720 957 1488 
6 523 579 742 937 1482 
7 485 541 685 874 1446 
8 702 900 1122 1737 2250 
9 455 527 685 887 1412 
10 555 717 873 1221 1664 
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Table 4 Cooling flow pressure lost for smooth and rough channels 

 
(kPa)  

  10  25  50 100 

1 23.82 27.30 30.01 36.80 40.18 
2 15.71 17.18 20.01 22.56 27.41 
3 13.56 14.96 17.14 19.73 24.02 
4 15.71 17.17 20.12 22.64 27.36 
5 14.09 15.61 18.21 21.15 25.10 
6 17.73 19.37 22.41 25.46 30.63 
7 13.91 15.30 17.52 19.19 24.62 
8 64.02 75.07 81.68 95.96 103.42 
9 24.59 27.84 32.80 38.13 46.99 
10 58.40 71.90 80.19 96.63 107.82 

  

 

Fig. 10 Thermal-hydraulic performance factor of cooling channels 
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