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In this paper, an explicit formulation of optimal line-of-sight strategy is derived in closed-loop for 
integrated guidance and control (IGC) system without consideration of fin deflection limit. The airframe 
dynamics is modeled by a second-order non minimum phase transfer function, describing short period 
approximation. In the derivation of our optimal control problem, the actuator is assumed to be perfect 
and without limitation on fin deflection, whereas fin deflection limit is applied for the performance 
analysis of the presented optimal IGC solution. The problem geometry is assumed in one dimension and 
the final position and final time are fixed. The formulation is obtained in four different normalized 
forms to give more insight into the design and performance analysis of the optimal IGC strategy. In 
addition, guidance gains are obtained analytically in explicit form for steady-state solution. In most 
cases, the performance of IGC is better than that of IGC with steady-state gains, but has more 
computational burden; however, it is reasonable for today’s microprocessors. Curve fitting or look-up 
table may be used instead for implementation of optimal IGC strategy. Moreover, parametric study of 
nondimensional IGC parameters is carried out, such as weighing factor, dc gain, and short period 
frequency. Finally, the performance of both IGC strategies is evaluated with airframe model 
uncertainties. 
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Fig. 1 Geometry of one-dimensional problem 
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Fig. 2 Behavior of normalized guidance gains (26) for different values 
of = 0.01,0.05,0.1 ( / = 4, = 0.3, / = 1.2) 

2  ) 26 (
 = 0.01,0.05,0.1 ( / = 4, = 0.3, / = 1.2)  
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Fig. 3 Behavior of normalized guidance gains (26) for different values 
of = 1,2,4,6 ( = 0.05, = 0.3, / = 1.2 ) 

3  ) 26 (= 1,2,4,6 
( = 0.05, = 0.3, / = 1.2)  

  

  

  

  

Fig. 4 Normalized distance from LOS, acceleration, and fin deflection 
vs normalized time for different values of = 0.1,0.3,0.5 ( / = 4, 

/ = 1.2, = 0.05, = 30°) 
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Fig. 5 Normalized miss distance vs normalized final time for the two 
guidance laws ( / = 3, / = 4, / = 1.2, = 0.05, 

= 0.3, = 30°, = / ) 
5  ( / = 3, / = 4) 

/ = 1.2, = 0.05, = 0.3, = 30°, = / )(  
  

  

Fig. 6 Normalized miss distance vs normalized final time for the two 
guidance laws ( / = 10 , / = 4 , / = 1.2 , =
0.05, = 0.3, = 30°, = / ) 
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= 30°, = / )  
  

  

Fig. 7 Normalized miss distance vs normalized final time for the two 
guidance  laws  ( / = 5 , / = 2 , / = 1.2 , 

= 0.05, = 0.3, = ) 
7    
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Fig.  8 Normalized miss distance vs normalized weighting factor for 
the two guidance laws with different values of = 30°, 50° 
( / = 15, / = 10, / = 4, / = 1.2, = 0.3) 
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Fig. 9 Normalized miss distance vs  for the two guidance laws with 
different values of = 0.2,0.3  ( / = 15 , / = 10 , / =
1.2, = 0.05, = 30°) 

9  = 0.2,0.3   
( / = 15, / = 10, / = 1.2, = 0.05, = 30°)  

  

a  

Fig. 10 Normalized miss distance vs  for the two guidance laws 
with different values of = 1.2,1.5  ( / = 15 , / = 10 , 

/ = 4, = 0.05, = 30°) 
10  = 1.2,1.5   

( / = 10, / = 4, / = 4, = 0.05, = 0.3)  

  

Fig. 11 Normalized miss distance vs fin deflection limit for the two 
guidance  laws  ( / = 15 , / = 10 , / = 4 , / = 1.2 , 

= 0.05, = 0.3) 
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Fig. 12 Normalized miss distance vs normalized final time for the two 
guidance laws with uncertainty on  ( / = 10 , / = 4, 

/ = 1.2, = 0.05, = 0.3, = 30°) 
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Fig. 13 Normalized miss distance vs normalized final time for the two 
guidance laws with uncertainty on  ( / = 10 , / = 4 , 

/ = 1.2, = 0.05, = 0.3, = 30°) 
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Fig. 14 Normalized miss distance vs normalized final time for the two 
guidance laws with uncertainty on  ( / = 10 , / = 4 , 

/ = 1.2, = 0.05, = 0.3, = 30°) 
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Fig. 15 Normalized miss distance vs normalized final time under 
SOOG-IGC with different values of = 0, 0.45 0.65 ( / = 4, 

/ = 1.2, = 0.01, = 0.3, = 30°) 
15   SOOG-IGC 

 = 0, 0.45 0.65   
( / = 4, / = 1.2, = 0.01, = 0.3, = 30°)  

  

  

  

Fig. 16 Normalized miss distance vs normalized initial target position 
under  SOOG-IGC  with  different  values  of  HE = 10°, 30°, 50° 
( / = 4, / = 1.2, = 0.05, = 0.3, = 30°) 

16   SOOG-

IGC  HE = 10°, 30°, 50°   
( / = 4, / = 1.2, = 0.05, = 0.3, = 30°)  

  

  

  

Fig. 17 Normalized miss distance vs normalized target maneuvering 
time-to-go for the two guidance laws with = 0, 0.45 ( / =
4, / = 1.2, = 0.05, = 0.3, = 30°, HE = 10°) 
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Fig. 18 Steady-state normalized guidance gains (31) vs.  for 
different values of = 0.01,0.05,0.1 ( = 0.3, / = 1.2) 
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