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In this paper, simultaneous impact of two parallel drops on a thin liquid film is investigated using the 
lattice Boltzmann method. The purpose of this study is to investigate the effects of surface tension 
(characterized by Weber number), distance between two drops, and gas kinematic viscosity on the 
impact. The developed numerical model in this paper which is based on the Shan and Chen pseudo-
potential two-phase model makes it possible to access large density ratios, low viscosities, and tunable 
values of surface tension independent of the density ratio. The model is validated by comparing the 
coexistence densities with those of Maxwell analytical solution, evaluating the Laplace law for a 
droplet, and simulating single droplet impact on a thin liquid film. Simulation results of two drops 
simultaneous impact show that after impact, two jets raised between the drops join each other and form 
a central jet. Height of this jet increases with time leading to separation of secondary droplets from its 
tip. When the surface tension value is decreased, the central jet height is increased, but the size of the 
separated droplets is reduced. The crown shape observed in single drop impact is also seen in 
simultaneous impact of two drops. Increasing distance between two drops leads to a smaller central jet 
height and an increase in the crown radius. The crown height, however, was found to be independent of 
the distance. Finally, increasing gas kinematic viscosity reduces the central jet rising speed and delays 
separation of secondary droplets from the jet. 

Keywords:
Lattice Boltzmann Method 
Impact 
Droplet 
single component two-phase 
Shan and Chen 

  

1 -    . -

www.sid.ir


www.SID.ir

Arc
hive

 of
 S

ID

    

    

  

374  1395167  

]2,1[ .
 -

 .

)  1 )
 )  

 ( )   (
]3,2[ .

2 3   .
     

]4[ 
 .

4 .
 .

]5[ 
  

]6[ 
 .

5  
 .

6 
 .

7 )
 (8   

]7[ 
   . -

0.1 

  
]8[ 

9 710010 ) 
 .  (

7100

  .

 .
 .

  
]2[ 

1 Ohnesorge 
2 Deposition or Coalescence 
3 Splashing 
4 Bouncing 
5 Capillary waves 
6 Crown 
7 Capillary number 
8 Viscosity length 
9 Methoxy-nonafluorobutane 
10 HFE 7100 

 .
 .]9[ 

  

 -

 .]10[  ]11[ 

 .]3[ 

 .]12[ 
  

 
 .]13[ 

 .]14[ 

.  

 .

  .

 .
]16,15[]17[ 

]18[  .

 .

  

 .
]19[  .

500  .]20[ 
 

 .]21[ 

100 2000  .
]22[ 

   

www.sid.ir


www.SID.ir

Arc
hive

 of
 S

ID

    

    

1395167  375  

 .
]23[ ]24[ ]18[ 

 .

 .

 .
 .

1 
   .

 1000 
 .

- 
 2

 . 

2 -   
- -

]25[ ]26[:  

(1)  

( + , + ) ( , ) 

    = ( , ) ( , ) +  
  

) 1(x e  t 
 F f f eq  

  .) 
)  (2 (]27[:  

  

(2) = 1 + +
( )

2 2
 

  

) 2(  cs 
3  .= = 1 -

 . V   
D2Q9 
 ]27[:  

  

(3)  = 0 1 0
0 0 1

1 0 1
0 1 1

1 1 1
1 1 1  

  

(4)  

=

4
9

, = 0
1
9

, = 1,2,3,4
1

36
, = 5,6,7,8

 

1 Spurious currents 
2 Multi Relaxation Time 

3  .]26[ 

- 
 .

  
]28,27[ .]28[ 

)  .5 (]28[:  

(5) = 1
1

2
+

( )
 

) 5(= + / ( 0.5)  

)   .( 
4 F 

)  .  (= +

 F1  - F2 
-  

]19,5[.  

 -
 .)  6 (

]29[  :  

 ( + , + ) ( , ) 

(6) = +
1
2

 

) 6( s  .
)6)  (1)  (5(s ]30[ :  

(7)  = +
( )

 

5 )  6 (M 
  

  RHS of Eq. (6) = =  

(8)  +
1
2

 

M D2Q9 ]31[:  

(9) 

=

1 1 1
4 1 1

2

1 1 1
1 1 2

2 1

1 1 1
2 2 2
1 1 1

0 1 0
2 0

0 0 1

1 0 1
2 0 1

1 1

1 1
1 1

1
0 0 2
0 1 1
0 0 0

0 2 1
1 1 0
0 0 1

1 1 1
0 0 0
1 1 1

 

  
(10) =  

3 Forcing scheme 
4 Effective mass 
5 Right Hand Side (RHS) 

www.sid.ir


www.SID.ir

Arc
hive

 of
 S

ID

    

    

  

376  1395167  

) ) 2 ((
]32[:  

(11) 

= = (1, 2 + 3| | , 1 3| | , , 
                           , , , , )T 

, ) 11 ( .
)8( I  

) 12 (]32[:  

(12)  

= = diag( , , , , , , , , ) = 

diag , , , , , , , ,  

) 12( e    .j  
q  . 

- –  .
 -

  
s1s4 s6  .s2 s9  =s8 

1 ]32[:  
  

(13) =
1

0.5  

  
(14)  = ( 0.5)  

  

) 15 (
]33[:  

  

(15) = +  

  

) 15(glgl   :
 

 .) 15 (

)   .14( 
 .

   ( ) . 
)  16 (

]32[:  
  

(16)  = , = +
2

 

  
)  16(

  
]32[  )17 (

  

1 Bulk viscosity 

(17)  

=

0

6 + +
12 | |

(1 0.5)

6 +
12 | |

(1 0.5)

2

 

  

]34[ 
 .) 8 (

) 18 (]34[:  
   

)18(  
= +

1
2

 

 +  
   

) 18 (C ]34[:  

(19) 

=

0
1.5 +
1.5 +

0
0
0
0

 

QxxQxy Qyy  ) 20 (]34[:  
  

(20)  =
2

( , ) (| | ) ( + , )
( , )  

  
) 20( 

 .G = -1 (1) = (2) = 
)  

)4 (.(  
 .
) 18 (

M 
 .]32[:  

  
(21) ( + , + ) = ( + ) 

  

 ]32[:  
  

(22)  ( , ) = ( , ) (| | ) ( + , )  

  

(23)  =
2( )

 

  

c ) 23 .    (

www.sid.ir


www.SID.ir

Arc
hive

 of
 S

ID

    

    

1395167  377  

– ]27[:  
  

(24) =
1 + +

1
 

  
) 24(= 0.4963 = 0.18727  .

= 0.3773
( )

  .Pc  .
b = 4,  R  =  1  .a 

]31[ .a 
1000 0.25 10 0.5 

  
- ) 25 (

]27[:  

( , ) = ( , ) (| | ) ( ) ( + )  

(25)   

) 25(w 
 .

  
 .S 

  

 3 -   
3-1 -   

1 ) 

2 
 .50 
 200× 200  )26 ( ]35[:  

  

(26) = +
2

tanh 1 tanh 2  
  

) 26(= ( )  = ( )  .
 .

 = 0.6, s2 = s3 = 0.51, s5 = s7 =1.1    0.114 
 .a 0.6 

0.25 0.5  .10000 
 .1 

 .  1 
 .

1   

3-2 -    
           

1 Thermodynamic consistency 
2 Maxwell construction 

     P        
     R0    .     

              
          

   .         
          

)27 (  ]27[:  

  =
+
2  

(27)  2 tanh
2 ( ) + ( )

5  

) 27( x0  y0        100  .
 ), s2=s3, s5=s7, , a (  3-1  . 

2       0.48      
1000  . 2        

  
Fig. 1 Comparison of densities obtained from simulations and those of 
Maxwell construction. 
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Table  1 Quantitative comparison of some densities obtained from the 
numerical model and Maxwell construction.  

   
   

0.7  0.358 / 0.00921 0.358 / 0.0093 

0.65 0.38236 / 0.005687 0.3823 / 0.0056 

0.6 0.4062 / 0.00273 0.4061 / 0.003 

0.55 0.43 / 0.0014 0.43 / 0.0015 

0.48 0.4638 / 0.000483 0.464 / 0.000445 
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Fig. 2 Evaluation of Laplace law at temperature ratio of 0.48, 
(corresponding to density ratio of 1000). 
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Fig. 5 A schematic picture showing the measured crown radius ( ) in 
this paper. 
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(b)  
Fig. 6 Time evolution of two parallel droplets impact on a thin liquid 
film. (a): Impact snapshots. (b): Impact snapshots in a single image.  
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Fig. 7 Velocity field. 
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Table 2 Investigation of mass conservation for results of Fig. 6 as a 
sample.  

  t  

1  = 6737.2  0 

0.9999 6736.6  0.4  

0.9999  6736.6 0.8  

0.9999 6736.7 1.2  

1 6737.3 2 

1 6737.3 2.8 

1  6737.2 3.2 
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Fig. 10 Effect of gas kinematic viscosity. 
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