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 Alzheimer's is the most common form of dementia. Amyloid beta peptides play a key role in the 
pathology of Alzheimer's disease and the recent surveys have demonstrated that amyloid beta oligomers 
are the most toxic component of them. Among oligomers, considering the high durability of dimer in 
comparison to other kinds has more toxic effects. Prefoldin is a molecular chaperone which prevents 
accumulation of misfolded proteins. Prefoldin has demonstrated that it can also operate as a nano 
actuator. In this article, the interaction between the prefoldin nano actuator and dimeric pathogenic nano 
cargo in molecular dimensions is investigated; hence all-atom molecular dynamic simulation in explicit 
solvent was performed at physiological temperature. Visualizing the results and investigating the atomic 
distance between nano actuator and pathogenic nano cargo revealed that two arms of six arms of 
prefoldin nano actuator have been able to capture cargo and during the simulation they have made 
hydrogen bonds. Furthermore, investigating the hydrophobic effects between the hydrophobic amino 
acids in the cargo and nano actuator revealed that these effects have positively affected the stability of 
the binding between arms and the cargo. This article introduces prefoldin as an inhibitory factor for 
dimeric oligomer from amyloid beta. 
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Fig. 1 Crystal structure of archea prefoldin [14] 
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1    
Table 1 Properties of Amino acids of amyloid beta1-42’s dimer in 
terms of charge and hydrophobicity scales 

100 (*)   
97  Leu 
76  Val 
100  Phe 
41  Ala 
-31  Glu 
-55  Asp 
76  Val 
0  Gly 
-5  Ser 

-28  Asn 
-23  Lys 
74  Met 

 (*) 

  
Fig. 2 (a) Amino acid chain for a strand amyloid beta fibril (b) dimeric 
cargo has U shape structure and parallel and in-register beta sheets 

2 a]  (19 [b (
U   

  
Fig. 3 (a) Dimeric pathogenic nano cargo in the Prefoldin nano 
actuator’s cavity (b) electrostatic potential surface for initial complex 
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Fig. 4 Conformational changes in prefoldin nano actuator in the presence of pathogenetic cargo in the various time of simulation, the cargo marked as 
dark color for better recognition. 
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Fig. 5 Atomic distance between prefoldin nano actuator and 
pathogenetic nano cargo in the 12 ns MD simulation  
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12 ns  

  
Fig.  6 The number of H-bonds between nano cargo and nano actuator 
as function of simulation time  
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Fig. 7 The number of contacts between two atoms of cargo and actuator 
in the distance of less than 0.6 nm as function of simulation time 
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Fig. 8 Conformational changes of dimeric pathogenetic nano cargo in 
the various time of simulation 
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