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 In this paper, dynamic behavior of a nano particle on a rough surface in pushing based on the atomic 
force microscopy (AFM) was modeled and simulated by using the multipoint contact model. First, a 
multipoint contact model was extracted for two different roughness profiles of rough surfaces including 
the hexagonal and tetrahedral by combination of the Rumpf singular point contact model with JKR and 
Schwarz contact models, and the equations of the real contact area and adhesion force were proposed 
for multipoint contact of rough surfaces. Then, the dynamic behavior of particles in pushing on the 
rough substrate was modeled by using the new multipoint contact model. Additionally, simulation of the 
particles dynamics with radii of 50, 400 and 500 nm in moving on the different rough substrates was 
performed and analyzed, by assuming multipoint, singular point contacts, and flat surface contacts. 
Results showed that the multipoint contact model, especially in small radiuses of roughness has an 
essential impact on determination the critical force. Moreover, assumptions of the flatness or the 
singular point contact leads to a considerable error in estimating the critical force. Results showed 
profiles of rough surface and roughness distribution are very important factors in determining the 
numbers of the contact points, and changing the estimated amount of the critical force. In general, the 
obtained critical force based on the new multi¬point contact model in comparison with those based on 
the flat surface and the singular point contact models, was decreased and increased, respectively. 
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Fig. 1 Geometry of the Rumpf model for contact of a particles of radii 
R along the y- axis with spherical roughness of radius r that its center is 
on the substrate [15] 
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Fig. 2 Top view of roughness profiles, (a) hexahedron roughness 
profile, (b) tetrahedron roughness profile 
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Fig. 3 Displacement of the particle by using the tip of AFM probe, (a) 
the microcantilever deformation during pushing of the nanoparticle, (b) 
the interaction forces and deformation of the contact surfaces between 
the tip/particle and particle/substrate 
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Table 1 AFM geometric dimensions [29] 
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2 AFM ]29[  
Table 2 The mechanical properties of AFM [29] 

  
(kgm-3) 

(GPa)    
(GPa) 

2330 66.54 0.27 169 

3 ]29[ 
Table 3 Friction coefficient of sliding/rolling [29] 
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Fig. 4 Tetrahedron roughness distribution with = 4  to calculate the 
contact point number N 
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Fig. 5 The algorithm of the number of contact points calculation for 
tetrahedron roughness profile with = 4  
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Fig. 6 Nanoparticle starts to sliding on the smooth substrate after 0.213 
seconds and critical force of 0.647 N [29] 
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Fig. 7 Variation of the pushing critical force versus to change of the 
peak radius of the rough surface with the wavelength = 2  for the 
particle of radius = 50 nm; (a) sliding force, (b) rolling force 
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Fig. 8 Variation of the pushing critical force versus to change of the 
peak radius of the rough surface with the wavelength = 4  for the 
particle of radius = 50 nm; (a) sliding force, (b) rolling force 
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Fig. 9 Variation of the pushing critical force versus to change of the 
peak radius of the roughness surface with the wavelength = 2  for 
the particle of radius = 400 nm; (a) sliding force, (b) rolling force 
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Fig. 10 Variation of the pushing critical force versus to change of the 
peak radius of the rough surface with the wavelength = 4  for the 
particle of radius = 400 nm; (a) sliding force, (b) rolling force 
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Fig. 11 Variation of the pushing critical force versus to change of the 
peak radius of the rough surface with the wavelength = 2  for the 
particle of radius = 500 nm; (a) sliding force, (b) rolling force 
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Fig. 12 Variation of the pushing critical force versus to change of the 
peak radius of the rough surface with the wavelength = 4  for the 
particle of radius = 500 nm; (a) sliding force, (b) rolling force 
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