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 In this paper, the performance of a single-axis attitude control with pulse-width pulse-frequency 
(PWPF) modulation is enhanced using a modified proportional-integral-derivative (PID) controller for a 
rigid satellite with on-off thruster actuators. For this purpose, the well-known observer-based PID 
approach is utilized. The on-off thruster actuator is modeled with a constant delay followed by a 
second-order binomial transfer function. The modulator update frequency is limited to 40 Hz as an input 
to the on-off thruster actuators. In this study, the design criteria of pointing accuracy, overshoot of the 
attitude response, fuel consumption, and the number of thruster firings are considered for a step external 
disturbance (with different values). The parameters of the observer-based PID controller are tuned using 
parametric search method. Simulation results show that the fuel consumption and settling time of the 
observer-based approach are considerably decreased with respect to those of PID controller with PWPF 
modulator. Moreover, the overshoot of the observer-based approach  is omitted. Finally, the robustness 
of the observer-based modified PID controller is investigated in presence of uncertainties in satellite 
moment of inertia and thrust level of on-off actuators. 
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Fig. 1 Block diagram of satellite attitude control with PWPF modulator and PID controller [24] 
 1 PID [24] 

Fig. 2 Block diagram of  satellite attitude control with PWPF modulator and observer-based modified PID controller [24] 
2 PID [24] 
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Fig. 3 Comparison of attitude control response for three modified PID 
controller with PWPF Modulator [24] 

3 PID 
[24] 
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Table 1 Initial values and parameters 

  
 1 (N m)  
 0.45  
 0.15  

K 4.5 
  0.15 (s) 

 0.01 (s)  
 0.03 (s)  

T 0.03 (s)  
 0.01 (s)  

J 10 (kg m )  
 15 (deg)  

(0) 0  
(0) 0  

 40 (Hz) 
 40 (s)  

2   
Table 2 Parametric search region 

  
 0.1-50 
 0.1-50 
 0.1-50 
 0.1-10 

3   
Table 3 Tuned parameters of controller for different input angles 

     
5 22.7 33.82 3.3 3.2 
15 23.3 34.95 5.3 5.45 
30 29.95 23.9 14.7 7.5 
45 25.65 24.25 10.15 3.05 
60 35.7 18.85 15.4 7.45 

2  % 90   



www.SID.ir

Arc
hive

 of
 S

ID

    

  -- ...     

  

144  1395168  

 

Fig. 4 The response of attitude control for PID controller and 
observer method ( = 1) 
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Table 4 Performance of PID controller and observer- based method  

   
) 

 
) 

 
V) (N) 

-  - 
 

14.1 2.24 %50.8 6.5 65 

 
9.5 6.5 0 1.79 68 

 
10.65 8.3 0 1.95 62 

 
9.8 6.85 0 1.83 66 

5  
Table 5 Tuned parameters of controller for different values of step 
external disturbances 

)      
0.03 23.3 34.95 5.3 5.45 

0.025 25.65 42.05 6 2 
0.02 27.5 43.55 7 1.8 

0.015 22.95 40.05 4.6 2.35 
0.01 26.95 34.4 6.65 2.05 

0.005 26.5 44.55 5.65 2.5 
0 23.95 43.35 4.8 3.5 

 

Fig. 5 The output signal of PWPF modulator 
5  

 

Fig. 6 Pseudo limit cycle for PID controller and observer-based method  
6 PID   
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Fig. 7 Rise time and settling time versus input angle 
7  

 

Fig. 8 Thruster firings versus input angle 
8  

 

Fig. 9 Fuel consumption versus input angle 
9  
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Fig. 10 Thruster firings versus moment of inertia uncertainty 
10  

 

Fig. 11 Fuel consumption versus moment of inertia uncertainty 
11  

Fig. 12 Thruster firings versus thrust level uncertainty 
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Fig. 13 Fuel consumption versus thruster level uncertainty 
13  

Fig. 14 Thruster firings versus external disturbance 
14  

 

Fig. 15 Fuel consumption versus external disturbance 
15  

Fig. 16 Pseudo limit cycle amplitude versus external disturbance 
16  

 

Fig. 17 Pseudo limit cycle of observer-based controller with perfect 
thruster model and modulator frequency=400 Hz  

17 
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