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NFORMATION  ABSTRACT

 The main purpose of this paper is modeling of the 
graphite/epoxy composite laminates using finite element method based on global
global area is modeled by first order shear deformation theory and the local area, in the free corner 
vicinity, i
analysis of thick angle
to uniform thermal and extension loading, respectively and th
interlaminar stresses are investigated. Verification of the presented results is performed via available 
results in the previous studies which show good agreement. The present study results show that when 
the cros
both length and width of the laminate. However, for the uni
stresses possess different distribution in the two di
that in angle
angle and the maximum interlaminar stresses occur in 30 degree plies in the free corner vicinity. 
Moreover, results prove that the effects of the free edge and the free corner are almost similar in layers 
with fiber angle less than 30 degrees. Parametric study on the thickness and stacking of the laminate 
layers illustrates that both parameters have a 
free corner
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BSTRACT 
The main purpose of this paper is modeling of the 
graphite/epoxy composite laminates using finite element method based on global
global area is modeled by first order shear deformation theory and the local area, in the free corner 
vicinity, is modeled by the Reddy's layer
analysis of thick angle
to uniform thermal and extension loading, respectively and th
interlaminar stresses are investigated. Verification of the presented results is performed via available 
results in the previous studies which show good agreement. The present study results show that when 
the cross-ply laminate is subjected to thermal loading, the interlaminar stresses distribution is uniform in 
both length and width of the laminate. However, for the uni
stresses possess different distribution in the two di
that in angle-ply laminates under extension loading, the free corner effect increases by increasing fiber 
angle and the maximum interlaminar stresses occur in 30 degree plies in the free corner vicinity. 
Moreover, results prove that the effects of the free edge and the free corner are almost similar in layers 
with fiber angle less than 30 degrees. Parametric study on the thickness and stacking of the laminate 
layers illustrates that both parameters have a 
free corner. 
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graphite/epoxy composite laminates using finite element method based on global
global area is modeled by first order shear deformation theory and the local area, in the free corner 
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analysis of thick angle-ply and cross-
to uniform thermal and extension loading, respectively and th
interlaminar stresses are investigated. Verification of the presented results is performed via available 
results in the previous studies which show good agreement. The present study results show that when 

ply laminate is subjected to thermal loading, the interlaminar stresses distribution is uniform in 
both length and width of the laminate. However, for the uni
stresses possess different distribution in the two di

ply laminates under extension loading, the free corner effect increases by increasing fiber 
angle and the maximum interlaminar stresses occur in 30 degree plies in the free corner vicinity. 
Moreover, results prove that the effects of the free edge and the free corner are almost similar in layers 
with fiber angle less than 30 degrees. Parametric study on the thickness and stacking of the laminate 
layers illustrates that both parameters have a 
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The main purpose of this paper is modeling of the 
graphite/epoxy composite laminates using finite element method based on global
global area is modeled by first order shear deformation theory and the local area, in the free corner 

s modeled by the Reddy's layer-wise theory. Using this method provides the possibility of 
-ply laminates. The cross

to uniform thermal and extension loading, respectively and th
interlaminar stresses are investigated. Verification of the presented results is performed via available 
results in the previous studies which show good agreement. The present study results show that when 

ply laminate is subjected to thermal loading, the interlaminar stresses distribution is uniform in 
both length and width of the laminate. However, for the uni
stresses possess different distribution in the two directions of the laminate. Also, results demonstrate 

ply laminates under extension loading, the free corner effect increases by increasing fiber 
angle and the maximum interlaminar stresses occur in 30 degree plies in the free corner vicinity. 
Moreover, results prove that the effects of the free edge and the free corner are almost similar in layers 
with fiber angle less than 30 degrees. Parametric study on the thickness and stacking of the laminate 
layers illustrates that both parameters have a significant influence on the interlamianar stresses at the 
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The main purpose of this paper is modeling of the free corner effect of cross
graphite/epoxy composite laminates using finite element method based on global
global area is modeled by first order shear deformation theory and the local area, in the free corner 

wise theory. Using this method provides the possibility of 
ply laminates. The cross-ply and angle

to uniform thermal and extension loading, respectively and the effects of the free edge and free corner 
interlaminar stresses are investigated. Verification of the presented results is performed via available 
results in the previous studies which show good agreement. The present study results show that when 

ply laminate is subjected to thermal loading, the interlaminar stresses distribution is uniform in 
both length and width of the laminate. However, for the uni-axial extension loading, the interlaminar 

rections of the laminate. Also, results demonstrate 
ply laminates under extension loading, the free corner effect increases by increasing fiber 

angle and the maximum interlaminar stresses occur in 30 degree plies in the free corner vicinity. 
Moreover, results prove that the effects of the free edge and the free corner are almost similar in layers 
with fiber angle less than 30 degrees. Parametric study on the thickness and stacking of the laminate 
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cross-ply laminate at the 90/0 interface under thermal loading 
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Fig. 12 Transverse normal stress zz versus y/b non dimentional at the 
angle-ply laminate at /-  interface under extension loading. 
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 Fig.13 Interlaminar shear stress xz versus x/a non dimentional 
coordinate in the angle-ply laminate at the /-  interface under 
extension loading. 
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Fig. 14 Interlaminar shear stress yz versus x/a non dimentional 
coordinate in the angle-ply laminate at the /-  interface under 
extension loading. 
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Fig. 15 Interlaminar normal stress zz versus x/a non-dimentional 
coordinate for different laminate thickness in the angle-ply laminate at 
the 45/-45 interface under extension loading 
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Fig. 16 Interlaminar normal stress zz versus y/b non-dimentional 
coordinate for different laminate thickness in the angle-ply laminate at 
at 45/-45 interface under extension loading 
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Fig. 17 Interlaminar shear stress xz versus x/a non-dimentional 
coordinate for different laminate thickness in the angle-ply under 
extension loading laminate at the 45/-45 interface 
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Fig. 18 Interlaminar shear stress yz versus y/b non-dimentional 
coordinate for different laminate thickness in the angle-ply laminate at 
the 45/-45 interface under extension loading 
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 Fig. 19 Interlaminar normal stress zz versus x/a non-dimentional 
coordinate for [45/-45]s and [-45/45]s laminates under extension loading 
at the 45/-45 interface 
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Fig. 20 Interlaminar normal stress zz versus y/b non-dimentional 
coordinate for [45/-45]s and and [-45/45]s laminates under extension 
loading at the 45/-45 interface 
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 Fig. 
21 Interlaminar shear stress xz versus x/a non-dimentional coordinate 
for [45/-45]s and and [-45/45]s laminates under extension loading at the 
45/-45 interface. 
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Fig. 22 Interlaminar shear stress yz versus y/b non-dimentional 
coordinate for [45/-45]s and and [-45/45]s laminates under extension 
loading at the 45/-45 interface 
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