ماهنامه علمى پژوهشى





mme.modares.ac.ir

# تحلیل عددی اثرات گوشه آزاد در چندلایههای کامپوزیتی زاویهدار براساس مدل سراسري-موضعي

 $^{*2}$ حسين محمدی کن[بادی $^{1}$ ، محمدجو اد محمو دی

1- دانشجوی کارشناسیارشد، مهندسی مکانیک، دانشگاه شهید بهشتی، تهران 2- استادیار، مهندسی مکانیک، دانشگاه شهید بهشتی، تهران

" تهران، صندوق يستى inj\_mahmoudi@sbu.ac.ir ،167651719 تهران، صندوق يستى

| اطلاعات مقاله                                                                                                                                                | چکیدہ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| مقاله پژوهشی کامل<br>دریافت: 03 خرداد 1395<br>ارائه در سایت: 02 شهریور 1395<br>اثر گوشه آزاد<br>چندلایههای زاویددار<br>مدل سراسری- موضعی<br>تنشهای بینلایهای | محدود و براساس مدل سراسری موضعی است. در این مدل، ناحیه سراسری با استفاده از تئوری مرتبه اول برشی و ناحیه موضعی، در مجاورت<br>محدود و براساس مدل سراسری موضعی است. در این مدل، ناحیه سراسری با استفاده از تئوری مرتبه اول برشی و ناحیه موضعی، در مجاورت<br>کوشه آزاد، با استفاده از تئوری لایروایز ردی مدل میشوند. استفاده از این روش امکان تحلیل چندلایههای ضخیم زاویهدار و متامد را بهوجود<br>می آورد. چندلایههای متعامد و زاویهدار به ترتیب تحت بار حرارتی و کشش یکنواخت قرار گرفته و اثرات تنشهای بین لایهای لبه آزاد و گوشه<br>آزاد مورد بررسی قرار می گیرد. اعتبارسنجی نتایج حاضر توسط نتایج در دسترس در تحقیقات پیشین صورت می گیرد که نشاندهنده تطابق خوبی<br>است. نتایج تحقیق کنونی نشان می دهند هنگامی که چندلایه متعامد تحت بار حرارتی قرار گرفته و اثرات تنشهای بین لایهای در هر دو جهت<br>وطول و عرض چندلایه یکنواخت است. در صورتی که برای بار کششی تکجهته تنشهای بین لایهای در هر دو جهت<br>متفاوت است. نتایج تحقیق کنونی نشان می دهند هنگامی که چندلایه متعامد تحت بار حرارتی قرار می گیرد توزیع تنشهای بین لایهای در هر دو جهت<br>می می او عرض چندلایه یکنواخت است. در صورتی که برای بار کششی تکجهته تنشهای بین لایهای در دو راستای چندلایه دارای توزیع<br>می منوات است، همچنین نتایج نشان می دهند که در چندلایههای زاویهدار تحت کشش یکنواخت با افزایش زاویه الیاف، اثر گوشه آزاد افزایش<br>می یابد و بیشترین تنشهای بینلایه ای در لایههای 30 درجه در مجاورت لبههای آزاد رخ می دهند. به علاوه نتایج ثابت می کند در لایههای با<br>می وایه الیاف کمتر از 30 درجه، اثرات لبه آزاد و گوشه آزاد تقریبا مشابه است. مطاله پارامتری بر ضخامت و چیدمان لایههای چندلایه نشان<br>می دهد که هر دو پارامتر بر تنش های بین لایهای در گوشه آزاد تقریبا مشابه است. مطاله پارمتری بر ضخامت و چیمان لایههای چندلایه نشان |
|                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# Numerical analysis of free corner effects in angle-ply composite laminates based on global-local method

# Hossein Mohammadi Roknabadi<sup>1</sup>, Mohammad Javad Mahmoodi<sup>2\*</sup>

Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran. \* P.O.B. 167651719 Tehran, mj\_mahmoudi@sbu.ac.ir

# **ARTICLE INFORMATION**

Original Research Paper Received 23 May 2016

Accepted 16 July 2016

Keywords:

Free corner effect

Angle-ply laminates Global-local model

Interlaminar stresses

Available Online 23 August 2016

# ABSTRACT

The main purpose of this paper is modeling of the free corner effect of cross-ply and angle-ply graphite/epoxy composite laminates using finite element method based on global-local method. The global area is modeled by first order shear deformation theory and the local area, in the free corner vicinity, is modeled by the Reddy's layer-wise theory. Using this method provides the possibility of analysis of thick angle-ply and cross-ply laminates. The cross-ply and angle-ply laminates are subjected to uniform thermal and extension loading, respectively and the effects of the free edge and free corner interlaminar stresses are investigated. Verification of the presented results is performed via available results in the previous studies which show good agreement. The present study results show that when the cross-ply laminate is subjected to thermal loading, the interlaminar stresses distribution is uniform in both length and width of the laminate. However, for the uni-axial extension loading, the interlaminar stresses possess different distribution in the two directions of the laminate. Also, results demonstrate that in angle-ply laminates under extension loading, the free corner effect increases by increasing fiber angle and the maximum interlaminar stresses occur in 30 degree plies in the free corner vicinity. Moreover, results prove that the effects of the free edge and the free corner are almost similar in layers with fiber angle less than 30 degrees. Parametric study on the thickness and stacking of the laminate layers illustrates that both parameters have a significant influence on the interlamianar stresses at the free corner

می گیرند؛ بنابراین تحلیل آن ها از اهمیت خاصی برخوردار است. یکی از عوامل مهم در تحلیل چندلایههای کامیوزیتی وجود تنشهای بین لایهای در

#### 1- مقدمه

امروزه کامپوزیتها در ساختارهای مختلفی در صنعت مورد استفاده قـرار

Engineering, Vol. 16, No. 8, pp. 207-217, 2016 (in Persian)

Please cite this article using: بوای ارجاع به این مقاله از عبارت ذیل استفاده نمایید: H. Mohammadi Roknabadi, M. J. Mahmoodi, Numerical analysis of free corner effects in angle-ply composite laminates based on global-local method, *Modares Mechanical* 

آنهاست تحلیل مناسب اثرات تنشهای بین لایهای روی لبهها و گوشههای آزاد یک چندلایه کامپوزیتی میتواند کمک مناسبی برای انتخاب چندلایههای کامپوزیتی باشد. تنشهای بین لایهای و اهمیت بررسی آن¬ها، در حدود 40 سال پیش با کارهای پایپز و پاگانو [1] در ارتباط با لبه آزاد معرفی شد و در سال های اخیر با گسترش به اثر گوشه آزاد ادامه یافت [5-2]. در این زمینه تحقیقات گستردهایی انجام گرفته است که هدف از این یژوهشها، ارائه راه حلها و روشهای پیشبینی و مطالعه تنشهای بین لایهای و ارائه راه کارهای جدیدتر برای کاهش خرابیهای حاصل از این اثرات است [6-6]. در حالت کلی می توان تحقیقات و روش های حل مسائل گوشه آزاد<sup>1</sup> و لبه آزاد<sup>2</sup> را به دو دسته روشهای عددی و روشهای تحلیلی تقسیم کرد. در بخش روشهای عددی، المانهای استاندارد با کاربرد چندگانه که شامل المان هایی که براساس معادلات تغییر مکان رایج فرمول بندی می شوند، است [2]، و یا المان های خاص با کاربرد ویژه که برای مدل سازی تنشهای تکین و با شرایط مرزی و یا شرایط خاص پیوستگی تغییر مکان، در مرز جداكننده لايهها كاربرد دارند، مورد استفاده قرار مي گيرد [2]. نوع المان مورد استفاده وابسته به شرايط تحليل مورد نظر است كه مىتواند براساس تغییر مکان، تنش و یا ترکیبی از هر دو باشد. علاوهبر این موارد، تفاوتهایی از قبیل استراتژیهای مشبندی و تراکم المانبندی در روشهای عددی به چشم میخورد که بیشتر مربوط به توانایی تجهیزات محاسباتی و زمان انجام پروژه می شود [2].

گوشه آزاد در سازههای لایهای، یکی از محلهای وقوع تنشهای موضعی است. محل برخورد دو لبه آزاد را گوشه آزاد مینامند. اثـر گوشـه آزاد کمتـر مورد توجه بوده و تا کنون تحقیقات اندکی در این زمینه صورت گرفته است. دلیل این امر ماهیت سه بعدی مؤلفههای تنش و عدم امکان در نظر گرفتن فرضهایی که منجر به حل شبه دو بعدی می شود، است؛ بنابراین برخلاف اثر لبه آزاد تحقیقات انجامشده در این زمینه تنها به موارد بسیار ساده و بارگذاری های مشخصی محدود می شود [3].

در سال 1999 و 2001، بكر [10,3] شكل سادهاى از روش نيرو- تعادل را جهت بررسی اثر گوشه آزاد در یک چندلایه کامپوزیتی متعامد، تحت بارگذاری حرارتی به کار برد. این روش برای چندلایه به کار برده شده به خوبی نتیجه داد و تنها به محاسبات سادهای نیاز داشت. میتلستد و بکر در سال 2003 [4] و 2004 [5]، با استفاده از تئوري مرتبه بالاي لايه منفرد<sup>3</sup> بر یایه تغییر مکان و استفاده از توابع مثلثاتی در راستای ضخامت به تحلیل گوشه آزاد در چندلایه متعامد پرداختند. در همین سال، باروسو و همکارانش [6] با استفاده از روش ماتریس انتقال<sup>4</sup>، به بررسی وضعیت و مرتبه تکین تنش در مجاورت گوشههای مواد چند جنسی از جمله چندلایههای کامپوزیتی پرداختند. این مواد شامل همسان گرد<sup>5</sup>، غیرهمسان گرد<sup>6</sup>، متعامـد<sup>7</sup> و همسان گرد متعامد<sup>8</sup> می شوند. میتلستد و بکر در سال 2005 [7] و 2006 [8]، وضعیت تکین تنش در مجاورت لبه آزاد و گوشه آزاد را با استفاده از روش المان محدود مرزی در مواد غیرهمسان گرد و با چیدمان لایههای مختلف بررسی کردند. آن ها بیان داشتند در حالت کلی اثر گوشه آزاد

- Free edge Single layer higher-order theory
- Transfer matrix
- <sup>5</sup> Isotropic <sup>6</sup> Anisotropic

<sup>3</sup>Isotropic orthogonal Boundary finite element

بحرانی تر از اثر لبه آزاد است. ژن و وانجی [9] در سال 2009، با اصلاح تئوری سراسری- موضعی<sup>10</sup> اثر گوشه آزاد در چندلایههای کامپوزیتی متقارن متعامد تحت بارگذاری حرارتی را مورد بررسی قرار دادند. این نتایج با نتایج حاصل از کارهای بکر و میتلستد مورد مقایسه قرار گرفت. اخیرا آنالیز خمش چندلایههای کامپوزیتی با استفاده از تئوری لایروایز، چندلایههای با خاصیت پیزوالکتریک، استوانه های تو خالی و همچنین اثرات گرادیان دما روی لبه های آزاد مورد مطالعه قرار گرفته است [11-11]، همچنین ژانگ و بینیندا مدلی برای پیشبینی خواص هرلایه از یک چندلایه کامپوزیتی و همچنین اثرات لبه آزاد ارائه کردهاند [15]. اثر ارتعاشات روی صفحات دایرهای پله دار همراه با لبه آزاد نیز بررسی شده است [16].

امروزه از روش سراسری- موضعی برای حل مسائل مختلفی مانند آنالیز کمانش پوستهها در بارگذاری حرارتی و مکانیکی [17]، آنالیز ضربه در صفحههای ساندویچی کامپوزیتی [18] و همچنین تیرهای کامپوزیتی [19] استفاده شده است. از مدل المان محدود بر مبنای روش سراسری- موضعی برای حل مسئل مختلف در چندلایه های کامپوزیتی استفاده شده است [22-20]

در این مقاله هدف بررسی اثرات لبه و گوشه آزاد در چندلایهای کامپوزیت متعامد و زاویهدار که به ترتیب تحت بار حرارتی و کششی یکنواخت هستند، با استفاده از روش سراسری- موضعی است. بدین منظور در این مدل ناحیه سراسری با استفاده از تئوری مرتبه اول برشی و ناحیه موضعی در مجاورت گوشه آزاد با استفاده از تئوری لایروایز ردی مدل می شوند و اثرات تنشهای بین لایه ای نرمال و برشی روی لبه و گوشه آزاد بررسی می شوند. به طور کلی عوامل گوناگونی در به وجود آمدن پدیده تورق یا جدایی بن لایهای<sup>11</sup> نقش دارند. مشکلات غیرقابل اجتناب مانند عوامل محیطی که در فرآیندهای ساخت به وجود میآیند، تنشهای سیکلی، ضربه، تنشهای بین لایه ای که در اثر ناپیوستگیهای هندسی و یا جنس مواد به وجود می آیند (لبهها، گوشهها، سوراخها) و شکست در زمینه می توانند سبب جداشدن لایهها، تبدیل آنها به ورقه های باریک و در نتیجه کاهش قابل توجه سفتی مکانیکی گردند. پس از آن که جدایش در مرز لایهها آغاز شد، در بارگذاری کمتر از حد شکست رشد میکند. با رشد جدایش، بار به گونهای توزیع می شود که در نواحی دیگر نیز جدایی به وجود می آید. این جدایی ها همچنان افزایش می یابند تا به یکدیگر بپیوندند و در نهایت سبب شکست کامل قطعه شوند. در حالت کلی جدایش می تواند در یکی از مدهای بازشدگی و یا کچلی، برش درونصفحهای و یا لغزش و برش برون صفحهای و یا پیچش برشی و یا ترکیبی از این مدها به وجود آید [24,23]. تـنشهـای برشـی و نرمال بین لایهای نیز میتواندد عاملی برای پدیده تورق باشند. در مرجع [23] سان و ژو معیاری براساس تنشهای برشی و نرمال بین لایهای ارائه کردهاند که با استفاده از آن میتوان پدیده تورق را با استفاده از تنشهای بین لايهاى تحليل كرد.

در ادامه به بررسی تئوریهای تغییر شکل برشی مرتبه اول و لایروایـز و روابط آن و همچنین نحوه پیادهسازی مدل سراسری- موضعی پرداخته می شود، سپس به مدل سازی مسئله گوشه آزاد پرداخته شده و در انتها نتایج بیان میشوند. برای بررسی اثر گوشه آزاد باید تـنشهـای بـین لایـهای را در امتداد دو لبه آزاد رسم کرد تا بتوان محل اتصال دو لبه آزاد که همان گوشه آزاد است را تحلیل کرد.

Free corner

Orthogonal

<sup>10</sup> Local-global theory 11 delamination

ناپیوستگی میشود، که این امر امکان پیوستگی تنشهای عرضی را به وجود می آورد. در تئوری لایروایز می توان با استفاده از تقسیم لایه به چندین زیرلایه و استفاده از توابع درونیاب خطی لاگرانژ و یا با استفاده از توابع درونیاب مرتبه بالاتر در یک لایه، دقت حل را تا حد مطلوبی افزایش داد [26-25]. تئوری لایروایز شرح داده شده در این قسمت هیچ محدودیتی برای استفاده از زیرلایهها ایجاد نمی کند و می توان با توجه به دقت مورد نیاز، تعداد زیرلایهها را برابر، بیشتر و یا کمتر از تعداد لایههای واقعی در نظر گرفت [26-25].

روابط کرنش-تغییرمکان برای تئوری لایروایز را میتوان با استفاده از رابطه (4) بهصورت رابطه (5) بهدست آورد:

$$\varepsilon_{x} = \sum_{I=1}^{N} \frac{\partial U_{I}}{\partial x} \psi^{I}$$

$$\varepsilon_{x} = \sum_{J=1}^{N} \frac{\partial V_{I}}{\partial y} \psi^{I}$$

$$\varepsilon_{x} = \sum_{J=1}^{N} W_{I} \frac{d\psi^{I}}{dz}$$

$$\gamma_{xy} = \sum_{J=1}^{N} \frac{\partial U_{I}}{\partial y} + \frac{\partial V_{I}}{\partial x} \psi^{I}$$

$$\gamma_{xz}$$

$$= \sum_{J=1}^{N} U_{I} \frac{d\phi^{I}}{dz} + \sum_{J=1}^{N} \frac{\partial W_{I}}{\partial x} \psi^{I}$$

$$\gamma_{yz}$$

$$= \sum_{J=1}^{N} V_{I} \frac{d\phi^{I}}{dz} + \sum_{J=1}^{N} \frac{\partial W_{I}}{\partial y} \psi^{I}$$
(5)

3-2- مدل سراسری - موضعی

در حل مسائل مربوط به چندلایههای کامپوزیتی میتوان از ترکیب تئوریهای مختلف، با عنوان مدلهای چندگانه<sup>1</sup> یا مدلهای سراسری-موضعی استفاده کرد و مسائل را با دقت بالا و پیچیدگیهای محاسباتی کمتر حل کرد [26,25]. مدل های سراسری- موضعی، حالت خاصی از مدل های چندگانه است و هنگامی که زیر ناحیه خاصی از دامنه حل مورد نظر که به نسبت کوچک است، به کار می روند. در بیشتر مواقع برای مدل های سراسری-موضعى از روش گامبه گام<sup>2</sup> استفاده مىشود [17-25,22]. اغلب ناحيه سراسری که بخش بزرگی از دامنه محاسباتی است، با استفاده از تئوریهای لایه منفرد تحلیل می شود و با استفاده از نتایج آن شرایط مرزی نیرویی و تغییر مکان برای زیرناحیه موضعی که شامل بخش کوچکی از ناحیه محاسباتی که به منظور خاصی مورد تحلیل قرار می گیرد، استخراج می شود. ناحیه موضعی میتواند با استفاده از مشهای بهبود یافته تئوریهای لایه منفرد و یا مشهای تئوریهای مرتبه بالاتر و لایروایز مدل شود. جهت پیادهسازی این مدلها از روشهای عددی مانند اجزای محدود استفاده می شود [25]؛ بنابراین باید میدان های تغییر مکان، کرنش و تنش را برای المانها تعريف كرد. ميدان تغيير مكان در صورت كلى مطابق رابطه (6) به شرح زیر است.

 $u_i(x, y, z) = u_i^{\text{ESL}}(x, y, z) + u_i^{\text{LWT}}(x, y, z)$ (6)  $u_i(x, y, z) = u_i^{\text{ESL}}(x, y, z) + u_i^{\text{LWT}}(x, y, z)$ (6)  $u_i(x, y, z) = u_i^{\text{ESL}}(x, y, z) + u_i^{\text{LWT}}(x, y, z)$ (6) 2- تحليل

$$u(x, y, z, t) = u_0(x, y, t) + z\phi_x(x, y, t)$$
  

$$v(x, y, z, t) = v_0(x, y, t) + z\phi_y(x, y, t)$$
  

$$w(x, y, z, t) = w_0(x, y, t)$$
(1)

ميدان تغيير مكان مربوط به مؤلفه تئوري لايه منفرد به صورت ميدان تغيير

1-2- تئوري تغيير شكل برشي مرتبه اول صفحات چندلايه

در این روابط ۵۵، ۷۵ و ۵۷ به ترتیب تغییرمکان صفحه میانی چند لایه

در راستای 
$$x$$
 و  $z$  و  $z$  و  $\phi_y$  و  $\phi_y$  چرخش حول محور  $x$  و  $y$  هستند. با استفاده از رابطه (1) میتوان روابط کرنش- تغییرمکان را به صورت رابطه (2) نوشت:

$$\varepsilon_{x} = \frac{\partial u_{0}}{\partial x} + \frac{1}{2} \left( \frac{\partial w_{0}}{\partial x} \right)^{2} + z \frac{\partial \phi_{x}}{\partial x} (x, y, t)$$

$$\varepsilon_{y} = \frac{\partial v_{0}}{\partial y} + \frac{1}{2} \left( \frac{\partial w_{0}}{\partial y} \right)^{2} + z \frac{\partial \phi_{y}}{\partial y} (x, y, t)$$

$$\varepsilon_{z} = \mathbf{0}$$

$$\gamma_{xy} = \frac{\partial u_{0}}{\partial y} + \frac{\partial v_{0}}{\partial x} + \frac{\partial w_{0}}{\partial x} \frac{\partial w_{0}}{\partial y} + z \left( \frac{\partial \phi_{x}}{\partial y} + \frac{\partial \phi_{y}}{\partial x} \right)$$

$$\gamma_{xz} = \frac{\partial w_{0}}{\partial x} + \phi_{x}$$

$$\gamma_{yz} = \frac{\partial w_{0}}{\partial y} + \phi_{y}$$

$$:[25] \qquad :[25] \qquad :[25$$

$$\begin{cases} \sigma_{y} \\ \sigma_{xy} \\ \sigma_{xy} \end{cases} = \begin{bmatrix} \bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} \\ \bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66} \end{bmatrix} \begin{cases} \varepsilon_{y} - \alpha_{y} \Delta T \\ \gamma_{xy} - \mathbf{2} \alpha_{xy} \Delta T \end{cases}$$

$$\begin{cases} \sigma_{yz} \\ \sigma_{xz} \\ \sigma_{xz} \end{cases} = \begin{bmatrix} \bar{Q}_{44} & \bar{Q}_{45} \\ \bar{Q}_{45} & \bar{Q}_{55} \end{bmatrix} \begin{pmatrix} \omega \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xz} \end{pmatrix}$$

$$(3)$$

رابطه (3) تنشرهای درون صفحهای و تنشرهای برون صفحهای برشی چندلایه را نشان میدهند. (7 ماریج ۵، ۶، ۶، *آپ آپ آرزایب* الاستیک کاهشیافته در مختصات مرجع سازه هستند. «۵٫ مر مر مریب شرایب انبساط حرارتی هستند.

#### 2-2- تئورى لايروايز

در مقایسه با تئوریهای لایه منفرد، تئوری لایروایز با معرفی تأثیرات برش عرضی و نرمال عرضی در لایههای گسسته تعریف واقعیتری از فیزیک مسئله ارائه میدهد و مدلسازی را دقیقتر میکند [26].

میدان تغییرمکان در تئوری لایروایز را میتوان بهصورت رابطه (4) تعریف کرد [25].

$$u(x, y, z, t) = \sum_{I=1}^{N} U_I(x, y, t)\psi^{I}(z)$$

$$v(x, y, z, t) = \sum_{I=1}^{N} V_I(x, y, t)\psi^{I}(z)$$

$$w(x, y, z, t) = \sum_{I=1}^{N} W_I(x, y, t)\psi^{I}(z)$$
(4)

در روابط بالا w  $v_{ew}$  تغییر مکانهای کلی به ترتیب در راستاهای x, y و N تعداد گرەها در راستای ضخامت و  $\sqrt{w}$  توابع درونیاب تکبعدی لاگرانژ در راستای z هستند [25]. این توابع به گونهای انتخاب میشوند که به طور لایهبهلایه پیوسته باشند. از آنجایی که تغییرات در راستای ضخامت در مؤلفههای تغییر مکان با استفاده از توابع تکهای لاگرانژ تعریف میشود، تغییر مکان در راستای ضخامت پیوسته خواهد بود، اما کرنش عرضی دچار

<sup>&</sup>lt;sup>1</sup> Multiple models

<sup>&</sup>lt;sup>2</sup> Step by step

جهت y و تغییر مکان در جهت z است.  $u_i^{LWT}$  مؤلفههای تغییر مکان مربوط به تئوری لایه منفرد هستند که از روابط (1) بهدست میآیند. با توجه به مربوط به تئوری لایروایز هستند که از روابط (4) بهدست میآیند. با توجه به سطح دقت مورد نیاز میتوان از بخشی و یا کل میدان لایروایز استفاده کرد تا مجموعهای از المانهایی را بهدست آورد که بتوانند رفتارهای پیچیده سینماتیکی را نشان دهند.

برای ایجاد اتصال مناسب بین المانهای تئوری مرتبه اول برشی (FSDT) و تئوری لایروایز (LWT) باید شرط مرزی مطابق رابطه (7) برقرار باشد.

$$U_I = U_N = \mathbf{0}, V_I = V_N = \mathbf{0}, W_1 = \mathbf{0}$$
 (7)

شکل 1 نحوه تغییر مکان المانها با توجه به شرط رابطه (7) را نشان میدهد.

#### 4-2- پیادہسازی المان محدود مدل سراسری- موضعی

شکل ضعیف تئوری مرتبه اول برشی حداکثر میتواند شامل مشتقهای مرتبه اول از متغیرهای  $u_0$   $u_0$   $w_0$   $w_0$   $\phi_x$   $\phi_y$  باشد؛ بنابراین میتوان آنها را با استفاده از توابع درون یاب لاگرانژ، تقریب زد. در نتیجه مؤلفههای تغییر مکان به صورت رابطه (8) تبدیل میشودند [25].

$$u_{o}(\mathbf{x}, \mathbf{y}, t) \approx \sum_{j=1}^{m} u_{j}(t)\psi_{j}^{e}(\mathbf{x}, \mathbf{y})$$

$$v_{o}(\mathbf{x}, \mathbf{y}, t) \approx \sum_{j=1}^{m} v_{j}(t)\psi_{j}^{e}(\mathbf{x}, \mathbf{y})$$

$$w_{o}(\mathbf{x}, \mathbf{y}, t) \approx \sum_{k=1}^{n} w_{j}(t)\psi_{j}^{e}(\mathbf{x}, \mathbf{y})$$

$$\phi_{x}(\mathbf{x}, \mathbf{y}, t) \approx \sum_{j=1}^{p} S_{j}^{1}(t)\psi_{j}^{e}(\mathbf{x}, \mathbf{y})$$

$$\phi_{y}(\mathbf{x}, \mathbf{y}, t) \approx \sum_{j=1}^{p} S_{j}^{2}(t)\psi_{j}^{e}(\mathbf{x}, \mathbf{y})$$
(8)

است. توابع درون یاب FSDT است. توابع درون یاب  $u_j \cdot v_j \cdot w_j \cdot S_j^{-1} \cdot S_j^{-2}$  المان  $U_j \cdot v_j \cdot w_j \cdot S_j^{-1} \cdot S_j^{-2}$  لاگرانژ  $(x, y) \psi_j^{-2} \cdot y_j$  برای تقریب مقادیر تغییر مکان مورد استفاده قرار می گیرد. با نوشتن معادلات حرکت مربوط به چندلایه و استفاده از شکل ضعیف تئوری



Fig. 1 Superposition of a FSDT and LWT elements displacement fields شکل 1 برهمنهی میدان تغییر مکان المانهای FSDT و

مرتبه اول برشی و توابع درونیاب آن میتوان مدل المان محدود تئوری مرتبه اول برشی را بهدست آورد. مدل المان محدود تئوری مرتبه اول برشی مطابق رابطه (9) به شرح زیر است [25].

$$\begin{bmatrix} [K^{11}] & [K^{12}] & [K^{13}] & [K^{14}] & [K^{15}] \\ [K^{12}] & [K^{22}] & [K^{23}] & [K^{24}] & [K^{25}] \\ [K^{13}] & [K^{23}] & [K^{33}] & [K^{34}] & [K^{35}] \\ [K^{14}] & [K^{24}] & [K^{34}] & [K^{44}] & [K^{45}] \\ [K^{15}] & [K^{25}] & [K^{35}] & [K^{45}] & [K^{55}] \\ \end{bmatrix} \begin{bmatrix} (F^1) - (F^{T1}) \\ (F^2) - (F^{T2}) \\ (F^3) \\ (F^4) - (F^{T4}) \\ (F^5) - (F^{T5}) \end{bmatrix}$$
(9)

با روندی مشابه شکل ضعیف و مدل المان محدود تئوری لایروایز مطابق (ابطه (10) عبارت است از [25]:

$$U_{I}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{t}) \approx \sum_{j=1}^{p} U_{I}^{j}(\boldsymbol{t})\psi_{j}(\boldsymbol{x},\boldsymbol{y})$$

$$V_{I}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{t}) \approx \sum_{j=1}^{p} V_{I}^{j}(\boldsymbol{t})\psi_{j}(\boldsymbol{x},\boldsymbol{y})$$

$$W_{I}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{t}) \approx \sum_{k=1}^{q} W_{I}^{k}(\boldsymbol{t})\varphi_{k}(\boldsymbol{x},\boldsymbol{y})$$
(10)

p و q تعداد گرههای المان دوبعدی برای تقریبهای درونصفحهای و عرضی است. به همین ترتیب  $U_I^j(t)$ ،  $U_I^j(t)$  و  $W_I^k(t)$  به ترتیب مقدار تغییر مکانهای  $V_I$ ،  $U_I$  و $W_I$  در  $V_I$ مین گره از سطح Iام المان را نشان میدهند.  $\Psi_i(x,y)$  و  $\varphi_k(x,y)$  چند جملهایهای درونیاب دوبعدی لاگرانژ  $\varphi_k = \Psi_j$  هستند. در این مقاله فرض بر این است که q و در نتیجه  $q_j$ ، چنین در این حالت روابط به صورت رابطه (11) اصلاح می شوند.  $[K^{11}] [K^{12}] [K^{13}] ( \{U_l\} )$  $(F_{l}^{1}) - (F_{l}^{T1})$  $[K^{12}]$   $[K^{22}]$   $[K^{23}]$   $\{V_I\}$  =  $\{F_I^2\} - \{F_I^{T2}\}$ (11)  $[K^{13}]$   $[K^{23}]$   $[K^{33}]$   $((W_I))$   $((F_I^3) - (F_I^{T3}))$ با استفاده از المانهای مدل شده در رابطه (9) و (11) می توان مدل المان محدود سراسری- موضعی را به شکل رابطه (12) بهدست آورد [25].  $\begin{bmatrix} \begin{bmatrix} K^{EE} \end{bmatrix} & \begin{bmatrix} K^{EL} \end{bmatrix} \begin{bmatrix} U^E \\ U^L \end{bmatrix} = \begin{bmatrix} \{F^E\} \\ \{F^L\} \end{bmatrix}$ (12) ماتریس [K<sup>EE</sup>] همان ماتریس سختی رابطه (8)، [K<sup>EE</sup>] ماتریس سختی رابطه (10) و ماتریس های [K<sup>LE</sup>] و [K<sup>LE</sup>] طبق رابطه (13)عبار تند :[25] ;  $K_{u_0U_I}$   $K_{u_0V_I}$   $K_{u_0W_I}$  $K_{v_0 U_I}$   $K_{v_0 V_I}$   $K_{v_0 W_I}$  $\begin{bmatrix} K^{\text{EL}} \end{bmatrix} = \begin{bmatrix} K_{w_0 U_I} & K_{w_0 V_I} & K_{w_0 W_I} \end{bmatrix}$  $K_{\phi_x U_I} \quad K_{\phi_x V_I} \quad K_{\phi_x W_I}$  $\begin{bmatrix} K_{\phi_{\mathcal{V}}U_{I}} & K_{\phi_{\mathcal{V}}V_{I}} & K_{\phi_{\mathcal{V}}W_{I}} \end{bmatrix}$ (13)  $[K^{\text{LE}}] = [K^{EL}]^{\text{T}}$ ضرایب ماتریس سختی نیز مطابق رابطه (14) تعریف می شوند [25]:

$$\begin{split} K_{\emptyset_{x}W_{I}} &= I_{13} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial x} \psi_{j} \, dx \, dy + \\ I_{36} \int_{\Omega^{e}} \frac{\partial \psi_{j}}{\partial y} \psi_{j} dx \, dy + C_{45} \int_{\Omega^{e}} \psi_{i} \frac{\partial \psi_{j}}{\partial y} dx \, dy + \\ C_{55} \int_{\Omega^{e}} \psi_{i} \frac{\partial \psi_{j}}{\partial x} dx \, dy \\ K_{\emptyset_{y}U_{I}} &= H_{16} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial x} dx \, dy + \end{split}$$

مهندسی مکانیک مدرس، آبان 1395، دورہ 16، شمارہ 8

www.S210.ir

$$H_{ij} = \int_{Z_k}^{Z_{k+1}} \bar{C}_{ij} \mathbf{z} \Phi^I dz , I_{ij} = \int_{Z_k}^{Z_{k+1}} \bar{C}_{ij} z \frac{d\Phi^I}{\mathbf{dZ}} dz$$
(15)

#### 3- مدلسازی مسئله گوشه آزاد

در این بخش، مسئله گوشه آزاد با استفاده از مدل سراسری- موضعی معرفی شده در بخش 2، مدلسازی میشود و به شرح هندسه مسئله، ناحیه سراسری و موضعی، نحوه مشبندی و اصلاح مشها پرداخته خواهد شد. همان طور که در شکل 2 نشان داده شده چندلایه مورد نظر در این تحقیق، یک چندلایه مربع شکل با طول ضلع 4 سانتی متر است. ضخامت هر لایه از چندلایه مربع شکل با طول ضلع 4 سانتی متر است. ضخامت هر لایه از مشبندی شکل 3 در ناحیه گوشه آزاد مدل شده است. در تئوری لایروایز، می توان در راستای ضخامت، لایه ها را به قسمتهای مختلفی تقسیم کرد. هر کدام از این قسمتها یک زیرلایه<sup>1</sup> نامیده می شوند. تعداد این زیرلایهها می تواند بیشتر، برابر و یا حتی در حالتی که دو لایه مجاور از یک جنس باشند (که می توان برای هر دوی آنها یک لایه در نظر گرفت)، کمتر از تعداد لایههای مادی باشند[کرایه]

از آنجایی که اثر گوشه آزاد و لبه آزاد به دلیل تغییر در خواص در مرز جداکننده لایهها به وجود میآیند، هر کدام از این زیرلایهها با نزدیک شدن به مرزها کوچکتر میشوند در شکل 4 نمونهای از اصلاح تقسیمبندی زیر لایهها مشهود است. همان طور که در بخشهای پیشین اشاره شد ناحیه سراسری بخش اعظم دامنه حل از جمله نواحی داخلی چندلایه را تشکیل می دهد و با استفاده از تئوری مرتبه اول برشی مدل سازی می شود. ناحیه موضعی ناحیه مجاور گوشه آزاد است که در این ناحیه تئوری لایروایز، حاکم است. شکل 4 چیدمان اصلاح شده زیرلایهها در راستای ضخامت را نشان می دهد.

ناحیهای که افزایش ناگهانی تنشهای بینلایهای در آن رخ میدهد، در حدود ضخامت لایههاست و ناحیه لایه مرزی نامیده می شود. برای افزایش دقت حل ناحیه بزرگ تری نسبت به ناحیه لایه مرزی با استفاده از المانهای لایروایز المانبندی شده است. در مجموع چندلایه مورد نظر به 400 المان تقسیم شده است که تعداد 140 المان از نوع مرتبه اول برشی و تعداد 260 المان از نوع لایروایز است. با توجه به مقایسهای که با نتایج دیگر انجام می گیرد ثابت می شود این تعداد مش برای حل این مسئله مناسب است.

#### 4- بحث و نتايج

در این قسمت ابتدا جهت اعتبارسنجی مدل سراسری- موضعی ارائـه شـده،



Fig. 2 Geometry of the laminate; the coordinate origin coincides with point A

شكل 2 هندسه چندلايه، انطباق مبدا مختصات بر نقطه A

$$\begin{split} H_{66} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial y} dx \, dy + H_{21} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial x} dx \, dy + \\ H_{26} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial y} dx \, dy + E_{45} \int_{\Omega^{e}} \psi_{i} \psi_{j} \, dx \, dy \end{split}$$
 $K_{\phi_{y}V_{l}} = H_{26} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial y} dx dy + H_{66} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial x} dx dy + H_{22} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial y} dx dy + H_{26} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial x} dx dy + E_{44} \int_{\Omega^{e}} \psi_{i} \psi_{j} dx dy$  $K_{\phi_{y}W_{I}} = I_{36} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial x} \psi_{j} \, dx \, dy +$  $I_{23} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \psi_j dx \, dy + C_{44} \int_{\Omega^{\rm e}} \psi_i \frac{\partial \psi_j}{\partial y} dx \, dy +$  $C_{45} \int_{\Omega^{\rm e}} \psi_i \frac{\partial \psi_j}{\partial x} dx \, dy$  $K_{u_0 U_I} = C_{11} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx \, dy +$  $C_{16} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial x} \frac{\partial \psi_{j}}{\partial y} dx dy + C_{61} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial x} dx dy + C_{66} \int_{\Omega^{e}} \frac{\partial \psi_{i}}{\partial y} \frac{\partial \psi_{j}}{\partial y} dx dy$  $K_{u_0V_I} = C_{12} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{16} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx$  $C_{66} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy$  $K_{u_0W_I} = E_{13} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \psi_j \, dx \, dy + E_{36} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \psi_j dx \, dy$  $K_{v_0 U_I} = C_{16} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx \, dy +$  $C_{66} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \mathbf{I}_{21} \int_{\Omega^{\rm e}} \frac{\partial \psi_j}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + \mathbf{I}_{21}$  $C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy$  $K_{v_0V_1} = C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{22} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{26} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy$  $K_{v_0W_l} = E_{36} \int_{\Omega^{R}} \frac{\partial \psi_i}{\partial x} \psi_j \, dx \, dy + E_{23} \int_{\Omega^{R}} \frac{\partial \psi_i}{\partial y} \psi_j dx \, dy$  $K_{w_0U_i} = E_{55} \int_{\Omega^c} \frac{\partial \psi_i}{\partial x} \psi_j \, dx \, dy + E_{45} \int_{\Omega^c} \frac{\partial \psi_i}{\partial y} \psi_j dx \, dy$  $K_{w_0V_I} = E_{45} \int_{\Omega}^{\Omega} \frac{\partial \psi_i}{\partial x} \psi_j \, dx \, dy + E_{44} \int_{\Omega}^{\Omega} \frac{\partial \psi_i}{\partial y} \psi_j dx \, dy$  $K_{w_0W_l} = C_{45} \int_{\Omega^e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{44} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx \, dy + C_{45} \int_{\Omega^e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx \, dy$  $K_{\phi_x U_I} = H_{11} \int_{\Omega^c} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial x} dx dy$ +  $H_{16} \int_{\Omega_e} \frac{\partial \psi_i}{\partial x} \frac{\partial \psi_j}{\partial y} dx dy + H_{61} \int_{\Omega_e} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial x} dx dy$ +  $H_{66} \int_{\Omega^{e}} \frac{\partial \psi_i}{\partial y} \frac{\partial \psi_j}{\partial y} dx dy$  +  $E_{55} \int_{\Omega^{e}} \psi_i \psi_j dx dy$ (14)

که در ان ضرایب طبق رابطه (15) عبارتند از:  

$$C_{ij} = \int_{Z_k}^{Z_{k+1}} \bar{C}_{ij} \Phi^I dz, E_{ij} = \int_{Z_k}^{Z_{k+1}} \bar{C}_{ij} \frac{d\Phi^I}{dZ} dz$$

س مىندسى مكانيك مدرس، آبان 1395، دوره 16، شماره 8 *[1* 

1 substrate



Fig. 3 The modified meshing of the solution domain





Fig. 4 The modified layout of the layers in the thickness direction شکل 4 چیدمان اصلاحشدہ زیرلایہھا در راستای ضخامت

نتایج حاصل از کارهای ژن و وانجی [9]، بکر [3] و بکر و میتلستد [5] با مدل کنونی مقایسه میشود، سپس نتایج حاصل از بارگذاری کششی بر چندلایههای زاویهدار ارائه میشود.کدنویسی المان محدود مسئله، با استفاده از بسته تجاری متلب 2021 انجام میپذیرد. در مراجع بالا اثر گوشه آزاد در چندلایه متقارن چهار لایه CFRP با آرایش <sub>«</sub>[0/09] تحت بارگذاری حرارتی ک<sup>0</sup>C1=1D مورد بررسی قرار گرفته است. خواص مکانیکی هر لایه طبق رابطه (16) به شرح زیر است [9.4،3].

$$E_1 = 135 \text{ GPa}, E_2 = E_3 = 10 \text{ GPa}$$
  

$$G_{12} = G_{13} = 5 \text{ GPa}, G_{23} = 3.972 \text{ GPa}$$
  

$$v_{12} = v_{13} = v_{23} = 0.27, \alpha_1 = -0.6 \times 10^{-6} \text{ °C}^{-1},$$
  

$$\alpha_2 = \alpha_3 = 40 \times 10^{-6} \text{ °C}^{-1}$$
(16)

تغییر مکان چندلایه در مرز 1، درجهت محور x و در مرز 4، در جهت محور y محدود شده است و چندلایه تحت بارگذاری حرارتی قرار می گیرد. به دلیل ناپیوستگی خواص حرارتی در سطح بین لایه 0 درجه و 90 درجه، ایـن بارگذاری سبب به وجود آمدن تنشهای بینلایهای در مجاورت گوشـه آزاد و در طول لبه آزاد میشود.

در شکل 5 یک آنالیز حساسیت در مورد اثر تعداد زیرلایـههای تئـوری لایروایز مورد استفاده بر تنش نرمال بینلایهای در مجاورت لبه آزاد چندلایـه متقارن متعامد مورد بحث انجام شده است. دیـاگرام متنـاظر تعـداد 3، 5 و 7 نشان داده شده است، همچنین نتایج مرجع [27] که کار نثیر و طهانی است، جهت اعتبارسنجی نتایج مدل کنونی در شکل 5 آورده شده است. چنانچه از شکل 5 مشاهده می شود، تعداد زیرلایهها در راستای ضخامت مربوط به ناحیه موضعی برابر ۳=۳ نتایج قابل قبولی را ائه می دهد.

با توجه به شکل 5 و همچنین مدلسازیهای مختلف مشخص می شود با استفاده از این تعداد زیرلایه، دقت قابل قبولی حاصل خواهد شد. نتایج حاصل از مدل ارائه شده و نتایج تحقیقات پیشین در شکلهای 6 تا 9 مشاهده می شود. نتایج حاصل از این مقاله برای بارگذاری حرارتی با مراجع پیشین مقایسه شده است. در مرجع [3] که اثر بکر است، روش حل با استفاده از یک

تحلیل توصیفی فرم بسته<sup>1</sup> از اثرات گوشه آزاد برای یک چندلایه ساده کامیوزیتی است. در مرجع [5] از روش حل بر مبنای تئوری مرتبه بالای فرم بسته برای بهدست آوردن تنشها، کرنشها و جابه جاییها در مجاورت گوشه آزاد استفاده شده است. در مرجع [9] ژن و وانجی با استفاده از مدل جابهجایی مرتبه بالا<sup>2</sup> که بر مبنای المان محدود است، برای آنالیز مسئله گوشه آزاد استفاده کردهاند. نتایج استنتاجشده از مدل ارائهشده در تحقیق كنوني با نتايج حاصل از نرمافزار نسترن<sup>3</sup> [3] كه بر پايه روش المـان محـدود (FEM) کلاسیک مقایسه شده است. در مرجع [3] از المان آجری (ششوجهی) 20 گرهی سهبعدی Hex20 در نرمافزار نسترن جهت تحلیل المان محدود استفاده شده است. در این تحلیل هر لایه چندلایه به 7 المان آجری گسسته شده است و برخی تظریف شبکه (م.) در گوشه آزاد چندلایه انجام شده است [3]. توجه به شکلهای 6 تا 9 کاملا مشهود است که مدل سراسری- موضعی در حل مسئله گوشه آزاد از دقت خوبی برخوردار است. باید دقت شود که در مسئله بالا تنشهای برشی بینلایهای در مجاورت گوشه آزاد مقدار کمتری نسبت به تنشهای بین لایه ای برشی حاصل از لبه آزاد دارند. همان طور که در شکل های 6 تا 8 نشان داده شده تنش نرمال بین لایهای در این ناحیه غالب است که این مسئله احتمال وقوع آسیبهایی نظیر جدایی بین لایه ای<sup>4</sup> را در مجاورت گوشه آزاد بیشتر می کند.

شکل 6 تنش نرمال بین لایه ای  $\sigma_{zz}$  در راستای x بین لایه های 0 و 90 در جد در انمایش می دهد. مقدار تنش نرمال بین لایه ای در mm درجه را نمایش می دهد. مقدار تنش نرمال بین لایه ای در mm 3.993 mm برار برا برا برا برا تا مال می در سع ای 7 و با توجه به این که بر حسب بارگذاری به صورت حرارتی است، نمودار تنش نرمال بین لایه ای  $\sigma_{zz}$  جرحسب نیز مانند شکل 6 و با توجه به این که  $\sigma_{zz}$  می تر مان بین لایه ای  $\sigma_{zz}$  مرحسب نیز مانند شکل 6 و با توجه به این که بر حسب برارگذاری به صورت حرارتی است، نمودار تنش نرمال بین لایه ای  $\sigma_{zz}$  بر حسب می گردد که تنش های برشی بین لایه ای  $\sigma_{yz}$  و  $\sigma_{xz}$  و  $\sigma_{xz}$  و  $\sigma_{xz}$  و مصاورت گوشه آزاد می گردد که تنش های برشی بین لایه ای  $\sigma_{zz}$  می گردد که تنش های برشی بین لایه ای  $\sigma_{zz}$  ایت. معدار بیشینه در mm در حالی تنش های بین لایه ای  $\sigma_{yz} = \sigma_{xz} = 18.83$  MPa برشی در آن براب  $\sigma_{yz} = \sigma_{xz} = 18.83$  MPa است، در حالی همچنین  $\sigma_{yz}$  در mm می گرد و تارای مقدار  $\sigma_{zz} = \sigma_{zz} = 10.67$  MPa است. معمان و تر محاورت آن براب  $\sigma_{zz}$  می تر در حالی مقدار حمای و ترمی این و تره محاورت ای مرد می در آن براب مرد معای و تر محاور و تر محاور معرد و معرد و تارای مقدار محاور ای مقدار محاور ای مقدار محاور و تور و تارای مقدار محاور و تور و تاری ای مقدار ای مقدار ایت.



Fig. 5 Interlaminar normal stress  $\sigma_{zz}$  versus *y* coordinate in the free edge at the interface of 0/90.under extension loading.

**شکل 5** تنش نرمال بین لایهای ع<sub>ق</sub>در مجاورت لبه آزاد در سطح میانی 0/90 در راستای محور y

<sup>&</sup>lt;sup>1</sup> closed-form

<sup>&</sup>lt;sup>2</sup> higher-order displacement model

<sup>&</sup>lt;sup>3</sup> MSC/NASTRAN

<sup>4</sup> delamination

-2 -4 -6 -8 (MPa) -10 Zhen-wanji [9] -12 2XD Becker-Mittelstedt [5] -14 Becker [3] -16 present -18 FEM (MSC/NASTRAN) [3 -20 2.61 2.81 3.01 3.21 3.41 3.61 3.81 X (mm)

Fig. 8 Interlaminar shear stress  $\sigma_{xz}$  in the vicinity of free corner in the cross-ply laminate at the 90/0 interface under thermal loading

**شکل 8** نمودار تنش برشی بینلایهای در مجاورت گوشه آزاد کامپوزیت متعامد در سطح 90/0 تحت بار حرارتی در راستای محور x



Fig. 9 Interlaminar shear stress  $\sigma_{yz}$  in the vicinity of free corner in the cross-ply laminate at the 90/0 interface under thermal loading شكل 9 نمودار تنش برشى بينkيه اى در مجاورت گوشه آزاد كامپوزيت متعامد در

a b 0° -0° 0° 0° 0° 0° 0° × x

سطح 90/0 تحت بار حرارتی در راستای محور y

Fig. 10 Geometry of the angle-ply composite laminate شكل 10 هندسه چندلايه كامپوزيتي زاويهدار

x/a=1 آغاز می شود. برای نمونه تنش نرمال بین لایه ای در نقاط y/b=1 و y/b=1 است، در حالی که این مقدار در برای زاویه 15 درجه برابر  $\sigma_{zz}=0.82$  MPa است، در حالی که این مقدار در همان نقطه برای زاویه 60 درجه به PA MPa برای زاویه 15 درجه برابر محمد مان برشی بین لایه ای  $\sigma_{xz}=0.32$  MPa برای زاویه 15 درجه برابر x/a=1 برای زاویه 15 درجه برابر  $\sigma_{xz}=0.07$  MPa تنش برشی بین لایه ای  $\sigma_{xz}=0.02$  MPa برای زاویه 30 درجه برابر  $\sigma_{xz}=0.07$  MPa فایش می برشی بین لایه ای  $\sigma_{yz}=0.02$  MPa رابر فایش  $\sigma_{yz}=0.02$  MPa رابر  $\sigma_{yz}=0.03$  MPa درجه برابر  $\sigma_{yz}=0.02$  MPa رابر  $\sigma_{yz}=0.03$  MPa است. مقدار تنش برشی بین لایه ای  $\sigma_{yz}$  درجه برابر  $\sigma_{yz}=0.03$  MPa رابر  $\sigma_{yz}=0.05$  MPa ( $\sigma_{yz$ 

با توجه به شکلهای 11-14 میتوان این طور بیان کرد که آغاز جدایش از گوشهها در لایههایی با زاویه الیاف بزرگتر از 30 درجه رخ میدهد. در لایههایی که زاویه الیاف آنها کمتر از 30 درجه است، اثر لبه آزاد و گوشه آزاد تقریبا مشابه است. در شکلهای 13 و 14 بیشترین تنشهای برشی  $\sigma_{yz}$ و  $x_{\sigma}$ در لایههای 30 درجه در مجاورت لبههای آزاد رخ میدهند که میتواند در ادامه اثر جهت گیری الیاف بر پدیده گوشه آزاد در چندلایههای زاویهدار و آرایش  $[\theta-\theta]_3$  تحت بارگذاری کششی مورد بررسی قرار میگیرد. این چندلایه شامل 4 لایه که به صورت متقارن مطابق شکل 10 قرار گرفته اند و تحت کرنش کششی  $e_{0}=10^{-6}$  در راستای محور x بارگذاری می شود. جنس کامپوزیت گرافیت اپوکسی بوده و خواص مکانیکی هر لایه از این چندلایه به شرح رابطه (17) است [27,28].

$$E_1 = 137.9 \text{ GPa}, \quad E_2 = E_3 = 14.48 \text{ GPa}$$

$$G_{12} = G_{13} = G_{23} = 5.86 \text{ GPa}$$

$$u_{12} = v_{13} = v_{23} = 0.21 \tag{17}$$

نتایج حاصل از بارگذاری کششی برای چندلایههای زاویهدار در شکلهای 11-11 نشان داده شده است. در شکل 11 و 12 مشخص است که توزیع تنش نرمال  $\sigma_{zz}$  در راستای x و y یکسان نیست. در مثال پیشین که مربوط به بارگذاری حرارتی بود تنش در راستای دو محور به صورت یکسان توزیع می گشت. در این جا به دلیل بارگذاری در جهت محور x توزیع تنش در شکلهای 11 و 12 متفاوت شده است.

با توجه به شکلهای 11-14 مشخص می شود که با افـزایش زاویـه، اثـر گوشه آزاد به خصوص اثر حاصل از تنش نرمال افزایش مـییابـد. ایـن بـدین معنی است که با افزایش زاویه الیاف امکان ایجاد جدایی بینلایـهای افـزایش مییابد و این آسیب در لایههای با زاویه الیاف بزرگتر از گوشههای چندلایـه



Fig. 6 Interlaminar normal stress  $\sigma_{zz}$  in the vicinity of free corner in the cross-ply laminate at the 90/0 interface under thermal loading.

**شکل 6** نمودار تنش نرمال بین لایهای در مجاورت گوشه آزاد کامپوزیت متعامـد در سطح 90/0 تحت بار حرارتی در راستای محور x.



Fig. 7 Interlaminar normal stress  $\sigma_{zz}$  in the vicinity of free corner in the cross-ply laminate at the 90/0 interface under thermal loading. شکل 7 نمودار تنش نرمال بین لایه ای در مجاورت گوشه آزاد کامپوزیت متعامد در سطح 90/0 تحت بار حرارتی در راستای محور y

(MPa)

σyz

20 [15/-15]s 15 -**■**---- [30/-30]s --▲-- [45/-45]s 10 ----- [60/-60]s 5 0 -5 0.652 0.702 0.752 0.802 y/b 0.852 0.902 0.952

**Fig. 14** Interlaminar shear stress  $\sigma_{yz}$  versus x/a non dimentional coordinate in the angle-ply laminate at the  $\theta/-\theta$  interface under extension loading.

**شکل 14** نمودار تنش برشی بینلایهای در مجاورت لبه آزاد کامپوزیت زاویهدار در سطح *6-/4* تحت بار کششی در راستای محور بدون بعد *y/*b

در ادامه به بررسی اثر ضخامت چندلایه بر تنشهای بینلایه ی در سطح -/45 45 هنگامی که چند لایه  $_{a}[45-45]$  تحت کشش یکنواخت در راستای محور x قرار می گیرد، پرداخته می شود. بدین منظور چندین چندلایه با ضخامتهای h=0.1, 0.3, 0.5, 1, 1.5 mm درنظر گرفته و تحت کشش یکنواخت  $_{c0}=10^{-6}$  قرار داده می شوند. خواص چند لایه نیز مطابق رابطه (17) است. نمودارها برای فهم بیشتر در راستای طول و عرض چندلایه بی بعد شده اند.

با دقت در شکلهای 15-18 مشخص میشود تمامی تنشهای بینلایهای با افزایش ضخامت کاهش مییابند. این کاهش تنشها در نقاط انتهایی نمودار و گوشه آزاد مشهودتر است. برای نمونه تنش نرمال بینلایهای  $\sigma_{zz}$  در نقطه  $z_z = 0$  برای ضخامت mm در حالی که این مقدار تنش برای ضخامت mm د.15 mm مقدار MPa 6.54 MPa بوده، در حالی که این مقدار تنش برای ضخامت h=0.1mm مقدار MPa 0.73 MPa کاهش مییابد. مقدار تنش نرمال بینلایهای  $\sigma_{zz}$  در راستای محور y برای ضخامت مقدار تنش نرمال بینلایه ای  $\sigma_{zz}$  در راستای محور y برای ضخامت مقدار تنش نرمال بینلایه ای  $\sigma_{zz}$  در راستای محور y برای ضخامت مقدار تنش می این مقدار تش مقدار تنش نرمال بینلایه ای  $\sigma_{zz}$  در راستای محور y برای ضخامت انوان نتیجه گرفت هنگام بارگذاری کششی چندلایه کامپوزیتی زاویهدار، می توان نتیجه گرفت هنگام بارگذاری کششی چندلایه کامپوزیتی زاویهدار، افزایش ضخامت چندلایه تأثیر قابل توجهی در کاهش تنشهای نرمال بین در شکلهای 15 تا 18 می توان نتیجه گرفت هنگامی که یک چندلایه در شکلهای 15 تا 18 می توان نتیجه گرفت هنگامی که یک چندلایه در می وزیتی زاویهدار تحت کشش یکنواخت قرار می گیرد، تنشهای نرمال بینلایه ای به وجود آمده مقدار بیشتری نسبت به تنشهای برشی بینلایه ای دارند.

مقدار تنش برشی  $\sigma_{xz}$  در نقطه  $\pi/a=1$  برای ضخامت  $m_{x}$  برای ضخامت h=0.1mm مقدار تنش برای ضخامت x/a=1 برابر با 0.01 MPa و این مقدار تنش برای ضخامت h=1.5 mm برابر  $\sigma_{yz}$  در نقطه  $\sigma_{yz}$  در نقطه است. تنش برشی  $m_{y}a=1$  برای ضخامت  $m_{y}a=1$  برابر MPa بوده که این مقدار برای ضخامت h=1.5 mm در همان نقطه تقریبا تا مقدار صفر کاهش می یابد.

با دقت در شکلهای 15-18 و اعداد گزارش شده نتیجه گیری می شود که افزایش ضخامت چندلایه سبب کاهش تمامی تنشهای بین لایهای در راستای طول و عرض چندلایه و روی لبه آزاد و گوشه آزاد می شود که این پدیده شامل کاهش تنشهای بین لایه ای روی گوشههای آزاد تأثیر بیشتری دارد.

در انتها به تأثیر لایهچینی یک چندلایه کامپوزیتی زاویهدار تحت کشش یکنواخت پرداخته میشود. بدین منظور دو چندلایه کامپوزیتی متقارن



**Fig. 11** Interlaminar normal stress  $\sigma_{zz}$  versus x/a non dimentional coordinate in the angle-ply laminate at the  $\theta/-\theta$  interface under extension loading.



**Fig. 12** Transverse normal stress  $\sigma_{zz}$  versus y/b non dimentional at the angle-ply laminate at  $\theta/-\theta$  interface under extension loading.

شکل 12 نمودار تنش نرمال بینلایهای در مجاورت لبه آزاد کامپوزیت با الیاف زاویهدار در سطح *6-اθ* تحت بار کششی در راستای محور بدون بعد *k/b* 



**Fig.13** Interlaminar shear stress  $\sigma_{xz}$  versus x/a non dimentional coordinate in the angle-ply laminate at the  $\theta/-\theta$  interface under extension loading.

شکل 13 نمودار تنش برشی بینلایهای در مجاورت لبه آزاد کامپوزیت زاویهدار در . سطح 6-/6 تحت بار کششی در راستای محور بدون بعد x/a



**Fig. 18** Interlaminar shear stress  $\sigma_{yz}$  versus y/b non-dimentional coordinate for different laminate thickness in the angle-ply laminate at the 45/-45 interface under extension loading

شکل 18 نمودار تنش برشی بینلایهای در کامپوزیت زاویهدار در سطح 45-/45 تحت بار کششی در راستای محور بدون بعد y/b برای ضخامتهای مختلف

ترتیب لایهچینی بهصورت قرینه نسبت به محور افقی تغییر میکنند و دارای مقدار عددی برابر هستند، ولی تنشهای نرمال بین لایهای در گوشه آزاد نسبت به تغییر چیدمان لایهها واکنش نشان میدهند.

برای نمونه مقدار تنش نرمال بینلایهای  $\sigma_{zz}$  در نقطه n=1 برای چندلایه  $\sigma_{zz}$  در نقطه  $\sigma_{zz}$  ابرای مقدار تنش برای چندلایه  $\sigma_{zz}$  [45/-45] برابر MPa 0.78 MPa بوده، در حالی که این مقدار تنش برای  $\sigma_{zz}$  چندلایه (-45/45) برابر -45/45 ابرابر -45/45 ابرابر -45/45 ابرابر y/b=1 است و این مقدار برای چندلایه (-45/45) برای چندلایه (-45/45) ابرابر -45/45 ابرابر -45/45 ابرابر -45/45 ابرابر -45/45 ابرابر -45/45 ابرابر -45/45 است و این مقدار تقطه 1=30 می درد. با محد در شکلهای 10 و 10 نتیجه گیری می شود که تغییر چیدمان چندلایه تغییر خاصی در تنش های نرمال بین لایهای روی لبه آزاد ندارد و نمودار آنها تقریبا بر هم منطبق است، ولی در انتهای لبه آزاد و روی گوشه آزاد تنشهای نرمال بینلایهای داری تغییراتی هستند.

مقدار تنش برشی  $\sigma_{xz}$  برای هر دو چندلایه  $s_{s}[45/-45] = 45/45] و <math>\sigma_{xz}$  نقطه 1-x/a=1 و x/a=1 مقدار تنش برشی x/a=1 مقدار عددی x/a=1 است، همچنین مقدار تنش برشی بین لایهای  $\sigma_{yz}$  برای هر دو چندلایه مورد بررسی در نقطه 1y/b=1 برابر مقدار عددی عددی MPa میدا است.

با توجه به شکلهای 19-22 مشاهده میشود تنشهای بینلایهای در انتهای لبه آزاد چندلایه دارای یک نقطه برآمدگی یا فرورفتگی هستند که این موضوع بیانگر بالا بودن شدت تنشهای بینلایهای در این نقاط و امکان جدایی بین لایهای بیشتر در این نقاط چندلایه است. در انتهای نمودارها تغییر تنش از مقدار منفی به مثبت یا بالعکس دیده میشود.

#### 5- جمع بندى

در این مقاله مدل سراسری- موضعی اجزاء محدود جهت بررسی اثرات گوشه آزاد در چند لایههای کامپوزیتی معرفی و بررسی شد. روابط المان محدود مدل با استفاده از ترکیب تئوریهای مرتبه اول برشی و لایروایز ردیبهدست آمد. با توجه به کاهش محاسبات و پیچیدگی این روش نسبت به مدلهای سه بعدی میتوان در مسائلی که نیاز به دقت بالای تحلیلهای سه بعدی دارند، با تقریب قابل قبولی از این روش استفاده کرد. در اینجا صحت این روش با استفاده از نتایج موجود در تحقیقات پیشین مورد تأیید قرار گرفت و سپس با استفاده از آن اثر گوشه آزاد در چندلایههای زاویهدار مورد بررسی قرار گرفت. نتایج این تحقیق نشان میدهد که در بارگذاری حرارتی توزیع تنش نرمال و برشی بینلایهای از نظر مقدار عددی در دو راستای طول و عرض چندلایه مشابه است، همچنین در بارگذاری کشش تک جهته، زاویه



**Fig. 15** Interlaminar normal stress  $\sigma_{zz}$  versus x/a non-dimentional coordinate for different laminate thickness in the angle-ply laminate at the 45/-45 interface under extension loading

**شکل 15** نمودار تنش نرمال بینلایهای در کامپوزیت زاویهدار در سطح 45-/45 تحت بار کششی در راستای محور بدون بعد x.⁄a برای ضخامتهای مختلف



**Fig. 16** Interlaminar normal stress  $\sigma_{zz}$  versus y/b non-dimentional coordinate for different laminate thickness in the angle-ply laminate at at 45/-45 interface under extension loading

**شکل 16** نمودار تنش نرمال بینلایهای در کامپوزیت زاویهدار در سطح 45-/45 تحت بار کششی در راستای محور بدون بعد *v/b* برای ضخامتهای مختلف



**Fig. 17** Interlaminar shear stress  $\sigma_{xz}$  versus x/a non-dimentional coordinate for different laminate thickness in the angle-ply under extension loading laminate at the 45/-45 interface

**شکل 17** نمودار تنش برشی بینلایهای در چندلایه زاویهدار در سطح 45-/45 تحت بار کششی در راستای محور بدون بعد x/a برای ضخامتهای مختلف

<sub>s</sub>[45/-45] و <sub>s</sub>[45/45] تحت کشش یکنواخت قرار میگیرند و تنشهای نرمال و برشی بینلایهای در راستای طول و عرض چندلایه و روی لبه و گوشه آزاد آن مورد بررسی و مقایسه قرار میگیرند. خواص چندلایه نیز مطابق رابطه (17) است.

شکلهای 19-22 تأثیر چیدمان لایههای یک چندلایه کامپوزیتی زاویهدار با زوایای 45 درجه را بر مؤلفههای نرمال و برشی تنش بینلایهای در سطح میانی لایههای 45-/45 تحت بار کششی یکنواخت نشان میدهند. با دقت در این شکلها مشاهده میشود تنشهای برشی بین لایهای با تغییر در



**Fig. 22** Interlaminar shear stress  $\sigma_{yz}$  versus y/b non-dimentional coordinate for [45/-45]<sub>s</sub> and and [-45/45]<sub>s</sub> laminates under extension loading at the 45/-45 interface

**شکل 22** نمودار تنش برشی بینلایهای در سطح میانی 45-/45 برای چندلایههای ه[45/-45] و ه[45/45] تحت بار کششی در راستای محور بدون بعد *d/y* 

سازههای کامپوزیتی باید این اثر را نیز مورد نظر قرار داد. به علاوه نتایج روشن میسازند که در زوایای کمتر از 30 درجه، اثر لبه آزاد و گوشه آزاد تقریبا مشابه هم است. با توجه به نتایج تحقیق حاضر مشخص شد بحرانی تر بودن اثر گوشه آزاد و یا لبه آزاد میتواند تابعی از زاویه الیاف باشد. با بررسی ضخامت چندلایههای زاویهدار مشاهده شد که با افزایش ضخامت، تنشهای بین لایه ای به ویژه در انتهای لبه آزاد و گوشه آزاد کاهش قابل توجهی دارند؛ بنابراین در طراحی استفاده از چندلایههای کامپوزیتی ضخیم تر مناسب تر است، همچنین نتایج ثابت میکنند تغییر در چیدمان لایههای چندلایه سبب تغییر رفتار تنشهای نرمال بین لایه ای میشود. هرچند این تغییر لایه چینی تأثیری روی مقدار تنشهای برشی بین لایه ای ندارد.

#### 6- مراجع

- B. Pipes, N. J. Pagano, Interlaminar stresses in composite laminates under uniform axial extension, *Composite Materials*, Vol. 4, No. 4, pp. 528-540, 1970.
- [2] Ch. Mittelstedt, W. Becker, Interlaminar stress concentration in layered structures: Part I-A selective literature survey on the free-edge effect since 1967, *Composite Materials*, Vol. 38, No. 12, pp. 1037-1062, 2004.
- [3] W. Becker, P. P. Jin, P. Neuser, Interlaminar stresses at the free corners of a laminate, *Composite Materials*, Vol. 45, No. 2, pp. 155-162,1999.
- [4] Ch. Mittelstedt, W. Becker, Free-corner effects in cross-ply laminates: An approximate higher-order theory solution, *Composite Materials*, Vol. 37, No. 22, pp. 2043-2068, 2003.
- [5] Ch. Mittelstedt, W. Becker, A single-layer theory approach to stress concentration phenomena in layered plates, *Composites Science and Technology*, Vol. 64, No. 10-11, pp 1737-1748, 2004.
- [6] A. Barroso, V. Mantič, F. París, Singularity analysis of anisotropic multimaterial corners, *Fracture*, Vol. 119, No. 1, pp. 1-23, 2003.
- [7] Ch. Mittelstedt, W. Becker, Asymptotic analysis of stress singularities in composite laminates by the boundary finite element method, *Composite Structures*, Vol. 71, No. 2, pp. 210-219, 2005.
- [8] Ch. Mittelstedt, W. Becker, Efficient computation of order and mode of three-dimensional stress singularities in linear elasticity by the boundary finite element method, *Solids and Structures*, Vol. 43, No. 10, pp. 2868-2903, 2006.
- [9] W. Zhen, Ch. Wanji, A higher-order displacement model for stress concentration problems in general lamination configurations, *Material & Design*, Vol. 30, No. 5, pp. 1458-1467, 2009.
- [10] W. Becker, P. P. Jin, J. Lindemann. The free corner effect in thermally loaded laminates, *Composite Structures*, Vol. 52, No. 1, pp. 97-102, 2001.
- [11] H. Yazdani Sarvestani, A. Naghashpour, M. Heidari-Rarani, Bending analysis of a general cross-ply laminated using 3D elasticity solution and layerwise theory, *Advanced Structural Engineering*, Vol. 7, No. 4, pp. 329-340, 2015.
- [12] J. Q. Ye, H. Y. Sheng, Free-edge effect in cross-ply laminated hollow cylinders subjected to axisymmetric transverse loads, *Mechanical Sciences*, Vol. 45, No. 8, pp. 1309-1326, 2003.
- [13] J. S. Ahn, Y. W Kim, Analysis of circular free edge effect in composite laminates by ρ-convergent global–local model, *Mechanical Sciences*, Vol. 66, No. 1, PP. 149-155, 2013.
- [14] M. Mirzababaee, M. Tahani, Accurate determination of coupling effects on free edge interlaminar stresses in piezoelectric laminated plates, *Composite Materials*, Vol. 30, No. 8, pp. 2963-2974, 2009.



**Fig. 19** Interlaminar normal stress  $\sigma_{zz}$  versus x/a non-dimentional coordinate for [45/-45]<sub>s</sub> and [-45/45]<sub>s</sub> laminates under extension loading at the 45/-45 interface

**شکل 19** نمودار تنش نرمال بینلایهای در سطح میانی 45-/45 برای چندلایههای [45/-45] و <sub>2</sub>[45/45] تحت بار کششی در راستای محور بدون بعد *x/a* 



**Fig. 20** Interlaminar normal stress  $\sigma_{zz}$  versus y/b non-dimentional coordinate for [45/-45]<sub>s</sub> and and [-45/45]<sub>s</sub> laminates under extension loading at the 45/-45 interface

**شکل 20** نمودار تنش نرمال بینلایهای در سطح میانی 45-/45 برای چندلایههای ه[45/-45] و ه[45/45-] تحت بار کششی در راستای محور بدون بعد y/b



**21** Interlaminar shear stress  $\sigma_{xz}$  versus x/a non-dimentional coordinate for [45/-45]<sub>s</sub> and and [-45/45]<sub>s</sub> laminates under extension loading at the 45/-45 interface.

**شکل 21** نمودار تنش برشی بینلایهای در سطح میانی 45-/45 برای چندلایههای ه[45/-45] و ه[45/45-] تحت بار کششی در راستای محور بدون بعد x/a

الیاف در مقدار تنشهای بینلایهای در مجاورت گوشه آزاد اثر بسزایی دارد. به گونهایی که در مجاورت گوشه آزاد مقدار تنش نرمال بینلایهای در زاویه 15 درجه MPa 0.82 MPa بوده در حالی که این مقدار برای زاویه 60 درجه تاMPa 6.333 میابد. اثر گوشه آزاد میتواند به اندازه لبه آزاد خطرناک باشد، چرا که همانطور که نتایج نشان میدهند بیشترین مقدار تنشهای بینلایهای در مجاورت گوشه آزاد هستند و نمودارها در مجاورت گوشه آزاد از نظر عددی دارای نقطه بیشینه هستند. در نتیجه در طراحی higher-order theory for the free edge effect in laminates, Composite Structures, Vol. 81, No. 4, pp. 499-510, 2007.

- [22] W. Zhen, C. H. Roggeng, Ch. Wanji, Refined laminated composite plate element based on global-local higher-order shear deformation theory, *Composite Structures*, Vol. 70, No. 2, pp. 135-152, 2005.
- [23] W. Ding, Delamination Analysis of Composite Laminates, PhD Thesis, University of Toronto, Toronto, 1999.
- [24] C. T. Sun , S. G. Zhou, Failure of quasi-isotropic composite laminates with free edges, Reinforced Plastics and Composites, Vol. 7, No. 6, pp. 515-557, 1988.
- [25] J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: theory and analysis, Second Edittion, pp. 12.725-12.769, CRC Press LCC, Boca Raton, Florida, 1945.
- [26] E. J. Barbero, J. N. Reddy, Modeling of delamination in composite laminate using a laye-rwise plate theory, *Solids and Structures*, Vol. 28, No. 3, pp. 373-389, 1991.
- [27] M. Tahani, A. Nosier, Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading, Composite Structures, Vol. 60, No. 1, pp. 91-103, 2003.
- [28] A. S. D. Wang, F. W Crossman, Some new result on edge effect in symmetric composite laminates, Composite Materials, Vol. 11, No. 1, pp. 92-106, 1977.

- [15] Ch. Zhang, A. Binienda, A meso-scale finite element model for simulating free-edge effect in carbon/epoxy textile composite, Mechanics of Materials, Vol. 76, No. 1, pp. 1-19, 2014.
- T. T. H. Le, C. M. Wang, T. Y. Wu, Exact vibration results for stepped [16] circular plates with free edge, Mechanical Sciences, Vol. 47, No. 8, pp. 1224-1248, 2005.
- [17] M. Sharivat, Nonlinear thermomechanical dynamic buckling analysis of imperfec viscoelastic composite/sandwich shells by a double-superposition global-local theory and various constitutive models, Composite Structures, Vol. 93, No. 11, pp. 2833-2843, 2011.
- [18] M. Shariyat, S. H. Hosseini, Eccentric impact analysis of pre-stressed composite sandwich plates with viscoelastic cores: a novel global-local theory and a refined contact law, Composite Structures, Vol. 117, No. 1, pp. 333-345, 2014.
- [19] Ch. Wanji, S. I. Junling, A model of composite laminated beam based on the global-local theory and new modified couple-stress theory, *Composite Structures*, Vol. 113, No. 1, pp. 99-107, 2013.
- [20] S. M. R. Khalili, M. Shariyat, A finite element based global-local theory for static analysis of rectangular sandwich and laminated composite plates, Composite Structures, Vol. 107, No. 1, pp. 177-189, 2014. [21] S. H. Lo, W. Zhen, Y. K Cheung, Ch. Wanji, An enhanced global-local