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In this study the steady-state dynamic of a linear, homogeneous, un-damped string, coupled with a 
locally connected spring-dashpot system is analytically investigated. Both ends of the string are 
assumed to be excited with identical and synchronous harmonic motion. It is shown that the damper 
introduces mode complexity and leads to frequency shift between the peak amplitudes in different 
locations of the string. Also, it causes phase variations which indicates mode complexity domain. In this 
study, it is shown that there are different combinations of spring and damper constants in which the 
mode complexity attains its maximum level. Surprisingly, the combination is unique in each given 
excitation frequency ratio. In this situation, the damping constant is bounded in a specified range, but 
the spring constant is increased as the excitation frequency ratio is increased. In such case, all vibration 
normal modes of the string are completely destroyed and, in turn, traveling waves are formed. Also, it is 
shown that the damping constant which leads to the maximum frequency shift is not necessarily equal to 
the one that introduces the maximum mode complexity. 
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Fig.  1 Schematic representation of the string coupled with a spring-
dashpot system located at z=L/4 
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Fig.  2 Evolution of | (x) A|  in terms of position x and forcing 
frequency ratio 0 for k=0.01 and =0.05 
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3 | (x) A| x    0 
k=0.01  =100  

-2-3  

 . 

  
  .

)35 ( x 
 .

 
 

-3-3  



www.SID.ir

Arc
hive

 of
 S

ID

    

-       

1395168  233  

  .
  .

  
 

 
 

  .
=2 

  
  .) 

4 ( 
   .

  -
  ."4"   

 x   .
5  

  . 
 

-4  

  
 

)36(  arg( ) = arctan
tan( )

1 + tan( )  
 

)37(  arg( ) = arctan
tan( )

1 + tan( )  
 

)  36)   (37(arg 1  
arg 2    .

   
  

 
  

0 =4/3 k=3.2  k=10.7 
  .k  

  ."6 7" 
 .k 

 . 
  .

 .  
o  k=3.2 

 
   .(0.25,- )  

 (0.91,- /2) (1,0) .
         

  
Fig. 4 The frequency shift for k=0.5 and =1.4 
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Fig. 6 Invariant points for the 0 =4/3 and k=3.2 

6 0 =4/3 k=3.2 

  
Fig. 7 Invariant points for the 0 =4/3 and k=10.7 
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Fig. 8 Invariant points for the 0 =4.421 and k=1.4 
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Fig. 9 Evolution of the phase of steady-state vibration throughout the string for first mode with stiffness  set to k=0.01 and  (1) =0 (2) =0.05 (3) 
=0.1 
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Fig.10 Steady-state vibration of the string at fifty time ( =0.04) for first mode, stiffness set to k=0.01, damping set to (1) =0, (2) =0.05, (3) =0.1 
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Fig. 11 The functions of k and  versus forcing frequency ratio 0 
for maximum mode complexity 
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 1 - 
Table 1 spring and damping constants related to maximum mode complexity for various locations of spring-dashpot system 
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