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 The large amount of diesel engine waste heats compels researchers to design systems that utilize the 
engine waste heat to provide the cooling demand of the heavy-duty vehicles and improve the engine 
efficiency. Considerable advantages of adsorption cooling system lead to them being selected for this 
purpose. Coolant and exhaust gases are the main sources of waste heats of diesel engines and using each 
of them to drive the adsorption cooling system requires its own equipment and working pair. In this 
paper, a detailed numerical model has been developed to examine the performance of the adsorption 
cooling system driven by the coolant and exhaust waste heats with the working pairs of silica gel-water 
and zeolite13x-water, respectively. An identical absorbent bed and ambient conditions have been 
employed to compare the performance of both systems to identify the more appropriate system. The 
results show that exhaust driven adsorption cooling system has a better capability to meet the vehicle 
cooling demand. Moreover, the performance of both adsorption cooling systems was examined under 
variable ambient condition. Results indicate that increase in ambient temperature leads to an almost  
linear performance drop in both systems that is more considerable in the coolant-driven adsorption 
system. 
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Fig. 1 Schematic diagram of adsorption cooling system powered by 
diesel engine exhaust gases 

1 
 

 

Fig. 2 Schematic diagram of adsorption cooling system powered by 
engine water coolant waste heat 

2 
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Fig. 3 Schematic of adsorber chamber and the finned-tubes as adsorber 
beds 
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Table 1 Common parameters used in the modeling of exhaust and 
coolant driven adsorption cooling systems 
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Fig. 4 Details of  the control volumes in different solution domains 
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Fig. 5 Comparison of a specific bed  point temperature variation with 
the experimental results along a cycle  
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Fig. 6 Variation of chamber pressure and averaged adsorbed uptake 
along a cycle  
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Table 2 Parameters value for exhaust and coolant driven adsorption cooling systems used in the present modeling 
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Fig. 7 Time variation of the averaged adsorber bed temperature in 
exhaust driven adsorption cooling system 
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Fig. 8 Time variation of the averaged adsorber bed temperature in 
coolant driven adsorption cooling system 
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Fig. 9 Bed pressure distribution and refrigerant vapor streamlines at the 
end of the isosteric desorption phase 
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Fig. 10 Bed pressure distribution and refrigerant vapor streamlines at 
the end of the isobaric desorption phase 
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Table 3 Performance parameters of the exhaust and coolant driven 
adsorption systems 
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Fig. 11 Performance comparison of the two adsorption cooling systems 
driven by exhaust gases and engine water coolant 
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Fig. 12 Variations of specific cooling power and cycle time with 
exhaust gases temperature in the exhaust driven adsorption system 
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Fig. 13 Variation of specific cooling power with ambient temperature 
for the exhaust and coolant driven adsorption cooling systems 
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