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In this paper the dynamic behavior of a rotating system which includes rotor (shaft), ball bearing and 
disk in stationary condition and different speeds is investigated. There are nonlinear characteristics in 
these systems which make the linear modeling inaccurate. So, in this paper the nonlinear dynamic 
equations of the system are derived and solved. To derive the equations of the system, Hamiltonian 
method is used, and complex coordinate transform is employed to reduce the number of equations. 
After solving the equations, to investigate the vibrational properties of the system, time response 
diagram, dynamic orbit, frequency response, and mode shape of the rotor is plotted. To validate the 
analytical results, finite element method by ANSYS (workbench) software is used. There is good 
conformity between the analytical results and finite element results in resonance frequencies of the 
system in the first three modes which indicates the sufficient accuracy in nonlinear modeling. It can be 
concluded from nonlinear modeling that the decay rate is negative for the all modes, which indicates the 
stability of them. Also, the maximum vibration amplitude in the bearing and rotor occurs in third and 
second modes respectively. Unbalance phase difference of 90 degrees in two discs causes the excitation 
of all three frequency modes, whereas by unbalance phase difference of 0 or 180 degrees in two discs, 
only the odd modes (first and third) and the even modes (second) are excited respectively.        
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Fig.  1 A schematic view of studied rotating system (all dimensions in 
mm) 

1  )   

1 waviness 
2 signal coherence theory 
3 stationary 

1    
Table 1 physical properties of rotating system components 

   
  0.01194  kgm2  
  0.00614  kgm2  

  3.780 kg  
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2 6010 
Table 2 dimensional properties of  SKF 6010 ball bearing 

Z=14 = 8.73 mm 
 =0  = 65 mm

  

 

Fig. 2 Meshing quality in ANSYS workbench software 
 2  

4 The bearing pitch diameter 
5 Solid186 
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Fig.  3 ANSYS results associated with second system resonance in 
unbalance phase  difference of 180 degrees in two discs 
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Fig. 4 first three modes of a free-free beam 
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Fig5. Campbell diagram of the rotor for the first three modes 
5   

  

  
Fig. 6 Campbell diagram (decay rate) of the rotor for the first three 
modes for c = 0.1  

 6  ( )  cr = 0.1  
  

  
Fig. 7 Campbell diagram (decay rate) of the rotor for the first three 
modes for c = 0.02 

 7  ( ) cr = 0.02  
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Table 3 Comparison of resonance frequencies obtained from nonlinear 
modeling and ANSYS software  

(%)   
    

13.6 47.14  54.6  
5.1  132.58  139.7  

10.27  368.3  410.45  
  

  
Fig. 8 Frequency response of vibration amplitude in bearing position 
versus rotor rotational speed for unbalance phase difference of 90 
degrees in two discs 

 8 
90  

  

 

Fig. 9 Frequency response of vibration amplitude in disc position 
versus rotor rotational speed for unbalance phase difference of 90 
degrees in two discs 
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Fig. 10 Frequency response of vibration amplitude in bearing position 
versus rotor rotational speed for unbalance phase difference of 180 
degrees in two discs 

10 
180   

  
Fig. 11 Frequency response of vibration amplitude in disc position 
versus rotor rotational speed for unbalance phase difference of 180 
degrees in two discs 

11  

180   
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Fig. 12 Frequency response of vibration amplitude in bearing position 
versus rotor rotational speed for unbalance phase difference of zero in 
two discs 

12  

 ( )   
  

  
Fig. 13 Frequency response of vibration amplitude in disc position 
versus rotor rotational speed for unbalance phase difference of zero in 
two discs 
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Fig. 14 waterfall plot of vibration amplitude in bearing position versus 
rotor rotational speed for unbalance phase difference of 90 degrees in 
two discs 

14 
90    

  

  
Fig. 15 waterfall plot of vibration amplitude in disc position versus 
rotor rotational speed for unbalance phase difference of 90 degrees in 
two discs 
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Fig. 16 a) time response b) dynamic orbit c) frequency response d) mode shape, associated with rotor vibration in bearing position for unbalance 
phase difference of 90 degrees in two discs and in non-dimensional rotational speed of 0.64 (first resonance frequency) 

16 a (b (c (d (90 
0.64 ) 

 

Fig. 17 a) time response b) dynamic orbit c) frequency response d) mode shape, associated with rotor vibration in disc position for unbalance phase 
difference of 90 degrees in two discs and in non-dimensional rotational speed of 0.64 (first resonance frequency) 
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Fig. 18 a) time response b) dynamic orbit c) frequency response d) mode shape, associated with rotor vibration in bearing position for unbalance 
phase difference of 90 degrees in two discs and in non-dimensional rotational speed of 1.8 (second resonance frequency) 

18 a (b (c (d (90 
1.8 )  

  
Fig. 19 a) time response b) dynamic orbit c) frequency response d) mode shape, associated with rotor vibration in disc position for unbalance phase 
difference of 90 degrees in two discs and in non-dimensional rotational speed of 1.8 (second resonance frequency) 

19 a (b (c (d (90 
1.8 )  
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Fig. 20 a) time response b) dynamic orbit c) frequency response d) mode shape, associated with rotor vibration in bearing position for unbalance 
phase difference of 90 degrees in two discs and in non-dimensional rotational speed of 5 (third resonance frequency) 

20 a (b (c (d (90 
5 )  

  
Fig. 21 a) time response b) dynamic orbit c) frequency response d) mode shape, associated with rotor vibration in disc position for unbalance phase 
difference of 90 degrees in two discs and in non-dimensional rotational speed of 5 (third resonance frequency) 

 21 a (b (c (d (90 
5 )  
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