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 In this paper, sound transmission loss through double-walled orthotropic cylindrical shells based on 
three-dimensional elasticity theory is investigated. Hence, the purpose of this paper is to analyze the 
effect of the acoustic wave incidence under two different angles on sound transmission loss through the 
shell. The present model is a double-walled orthotropic cylindrical shell immersed in a fluid with an 
infinite length, whereas the acoustic plane incident waves impinge upon the shell with two different 
angels of  and . The state space method is used to investigate the laminate approximated model along 
with transfer matrix approach for modeling both walls of cylindrical shell. In order to consider the two 
different angles of  and , the corresponding wave equations have been modified according to the wave 
numbers. Comparing the results obtained from the present study with those of other researchers shows 
an excellent agreement between the results. Moreover, the effects of different parameters on sound 
transmission loss through the shell have been evaluated. The results show an enhancement of sound 
transmission loss in double-walled cylindrical shells rather than single-walled cylindrical shells, 
particularly in high frequency range. Also, the results indicate the dependency of sound transmission 
loss on both the  and  angles. In other words, the variation in two incident angles may cause  
significant variations in sound transmission loss. 
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Fig. 1 Geometry of an orthotropic double-walled cylindrical shell 
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Fig. 2 Layers and sublayers of an orthotropic double-walled cylindrical 
shell 
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Fig. 3 Algorithm for identifying the optimum mode number 
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Fig. 4 Comparison of present study with Koval and Kim 
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Fig. 5 Comparison of present study with Lee and Daneshjou et al. 
(TSDT) 
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Fig. 6 Comparison of present study with Blaise and Lesueur 
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Fig. 7 Comparison of present study with Lee and Kim for a double-
walled shell 
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Fig. 8 Comparison TL between single and double-walled cylindrical 
shell 
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Fig. 9 Effect of the  angle in TL of the double-walled cylindrical shell 
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Fig. 10 Effect of  the air-gap size in TL of the double-walled cylindrical 
shell 
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Fig. 11 Effect of  the Mach number in TL of the double-walled 
cylindrical shell 
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