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Inimitable properties of graphene sheets enable a variety of applications such as axially moving 
nanodevices. Axial velocity affects dynamical response of systems. In this study linear vibration of an 
axially moving two-layer graphene nonoribbon with interlayer shear effect is proposed using nonlocal 
elasticity theory. Based on this theory, stress at a point is a function of strain at all other points of the 
body. Euler-Bernoulli theory is used to model the system due to nanoribbon thickness and length. It is 
assumed that the layers have the same transverse displacement and curvature and there is no transverse 
separation between layers surfaces. A shear modulus is imported in the potential energy expression in 
order to consider the interlayer shear effect due to weak Van der Waals forces. Governing equations are 
obtained using Hamilton’s principle and are solved by Galerkin approach. Results for clamped-free 
boundary conditions are presented and compared to other available studies. Results for pinned-pinned 
boundary conditions are presented and it is observed that increasing axial velocity causes divergence 
and  flutter  instabilities  in  the  system.  Effects  of  different  shear  modulus  and  nonlocal  parameter  on  
critical speeds are also proposed. 
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Fig. 1 Schematic of an axially moving two-layer graphene nanoribbon 
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Table 1 1st and 2nd natural frequencies for clamped-free boundary condition and different shear modulus  

   ) -  
-[5] 

  = 4.6 GPa = 3.01 GPa = 0.25 GPa 

  
(nm) 

  
(GHz) 

  
(GHz)  

  
(GHz)  

  
(GHz)  

  
(GHz)  

  
(GHz)  

  
(GHz)  

  
(GHz)  

12  6.92  52.08  7.20  48.87  7.88  45.56  11.23  45.53  
13  5.68  44.19  6.00  42.50  6.69  39.34  9.81  40.84  
14  4.74  38.93  5.06  37.32  5.75  34.30  8.66  36.94  
15  3.98  34.61  4.30  33.06  5.00  30.16  7.71  33.63  
16  3.37  31.00  3.68  29.52  4.38  26.71  6.92  30.81  
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Fig. 2 Variation of the imaginary part of eigenvalues for the 1st and 2nd 
mode as a function of dimensionless axial velocity for clamped-free 
boundary condition 
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Fig. 3 Variation of the real part of eigenvalues for the 1st and 2nd mode 
as a function of dimensionless axial velocity for clamped-free boundary 
condition 
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Fig. 4 Variation of the imaginary part of eigenvalues for the 1st and 2nd 
mode as a function of dimensionless axial velocity for pinned-pinned 
boundary condition 
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Fig. 5 Variation of the real part of eigenvalues for the 1st and 2nd mode 
as a function of dimensionless axial velocity for pinned-pinned 
boundary condition 
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Fig. 6 Variation of the imaginary part of eigenvalues for the 1st mode as 
a function of dimensionless axial velocity for pinned-pinned boundary 
condition and different shear modulus 
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Fig.  7 Variation  of  the  real  part  of  eigenvalues  for  the  1st mode as a 
function of dimensionless axial velocity for pinned-pinned boundary 
condition and different shear modulus 
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Fig. 8 Variation of the imaginary part of eigenvalues for the 1st mode as 
a function of dimensionless axial velocity for pinned-pinned boundary 
condition and different nonlocal parameter 
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Fig.  9 Variation  of  the  real  part  of  eigenvalues  for  the  1st mode as a 
function of dimensionless axial velocity for pinned-pinned boundary 
condition and different nonlocal parameter 
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