
  

  13951610 1-8
                

  

    

     
mme.modares.ac.ir

  

    

    

    

    
                

 

  
:  Please cite this article using:

M. Hesami, M. Haghighi-Yazdi, F. Najafi, Characterization of Mechanical Properties of an Inhomogeneous Soft Tissue Using Hyper-viscoelastic Modeling and Inverse Finite Element 
Method, Modares Mechanical Engineering, Vol. 16, No. 10, pp. 1-8, 2016 (in Persian) 

 -
 

12* 2  

1 -   
2 -   

 *143995596mohaghighi@ut.ac.ir  

      
  

 :15 1395  
 :19  1395  

 :11 1395  

  - -
 .  .

    .
 .

  .  .
- . 

- 
 .

0.0695 0.0315  .
  

  
- 

 
 

 
  

  

  

  

Characterization of Mechanical Properties of an Inhomogeneous Soft Tissue 
Using Hyper-viscoelastic Modeling and Inverse Finite Element Method 

Milad Hesami, Mojtaba Haghighi-Yazdi*, Farshid Najafi 

Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran  
* P.O.B. 143995596 Tehran, Iran, mohaghighi@ut.ac.ir 

ARTICLE INFORMATION ABSTRACT
Original Research Paper
Received 05 July 2016
Accepted 09 September 2016
Available Online 02 October 2016

Characterization of mechanical properties of soft tissues using hyper-viscoelastic models has been of 
special attention in medical fields such as medical diagnosis. In most of these studies, only one single 
tissue has been analyzed and therefore, in cases that the lower tissue does not function well, 
generalization of obtained results for a tissue will not be suitable for other tissues. In the current study, 
mechanical properties of chicken chest and sheep liver, two different study cases, have been determined 
simultaneously using an indentation test. To determine the properties of the obtained model, inverse 
finite element method (IFEM) has been employed. Moreover, an optimization algorithm has been used 
for minimizing the differences of force-time curves that are obtained from indentation test and finite 
element analysis. By separating the force-time curve to two hyperelastic and viscoelastic parts, the 
parameters of each part have been determined individually using a separate inverse finite element 
method. This procedure results in reducing the computation time. Finally, the parameters of viscoelastic 
and hyperelastic models are determined by nonlinear root mean square error of 0.0695 and 0.0315, 
respectively. Comparison of the curves obtained from finite element analyses and those obtained from 
experiments shows the validity and capability of the employed method.   
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Fig. 1 Indenter and experimental samples  
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Fig. 2 Loading 
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Fig. 3 solution procedure 
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Fig. 4 Finite element simulation in ABAQUS 
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 1  
Table 1 Prony series parameters for chicken breast 

  
  

  
  

 
  (s)  (s)    (s)  (s)  

  0.1  0.1  0.5  0.5  32 0.2134  0.2715  0.714  5.726  0.0595  

 
2  -    

Table 2 Initial and estimated parameters in the Mooney-Rivlin model for chicken breast 

  
  

  
  

 
(Pa)  (Pa)  (Pa)  (Pa)  

  100  100  4  436.54  148.26  0.0335  

Fig. 5 Force response of the model prediction and the experiment for chicken breast 
5  
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Table 3 Prony series parameters for sheep liver

  
  

  
  

 
  (s)  (s)    (s)  (s)  

  0.1  0.1  0.5  0.5  41 0.7241  0.1521  6.002  1.392  0.0445  

 4 -   
Table 4 Initial and estimated parameters in the Mooney-Rivlin model for sheep liver 

  
  

  
  

 
(Pa)  (Pa)  (Pa)  (Pa)  

  100  100  3  349.58  630.49  0.0231  

Fig. 6 Force response of the model prediction and the experiment for sheep liver 
6  

5   
Table 5 Prony series parameters for chicken breast and sheep liver 

  
  

  
  

 
  (s)  (s)    (s)  (s)  

  0.1  0.1  0.5  0.5  52 0.2034  0.2815  0.754  5.926  
0.0695  

  0.1  0.1  0.5  0.5  65  0.7353  0.1501  6.253  1.526  
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Table 6 Initial and estimated parameters in the Mooney-Rivlin model for chicken breast and sheep liver 

  
  

  
  

 
(Pa)  (Pa)  (Pa)  (Pa)  

  100  100  4  438.76  146.81  
0.0315  

  200  200  5  352.65  632.41  

Fig. 7 Force response of the model prediction and the experiment for chicken breast and sheep liver 
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