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 In this study, the hybrid Lattice Boltzmann - Finite difference - Immersed Boundary method has been 
used for investigation of problems with heat transfer. For this purpose, mass and momentum 
conservation equations are solved by the Immersed Boundary- Lattice Boltzmann method and finite 
difference method has been used for solving energy conservation equation. The effect of Immersed 
Boundary has been shown as force and external energy source term in equations and therefore flow and 
heat transfer around circular cylinder and also the effect of how to move cylinder in heating of fluid 
inside the cavity has been studied. for this purpose four kinds of movements: circular reciprocating, 
normal circular, diagonal amplitude and horizontal amplitude have been considered for the cylinder and 
in all cases, the changes of force coefficients and Nusselt number have been discussed. It has been 
shown that the circular reciprocating movement has more effect on heating of fluid inside the cavity, 
which indeed reduces the time of fluid heating about 20 percent in comparison with normal circular and 
diagonal amplitude movement and approximately 37 percent in comparison with horizontal amplitude 
movement. In all of the studied problems, the efficiency of hybrid method has been proved. 
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Fig. 1 The ways of lattice in Immersed-Boundary method 
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Fig. 3 Schematic of geometry 
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Fig. 5 Time dependent changes of force in a period of movement 
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Fig. 7 a) Changes of coefficient of x component of force vs X  b) 
Changes of coefficient of x component of force and position of center 
of cylinder vs time 
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Fig. 10 Schematic of geometry 
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Fig. 11 a) Changes of coefficient of x component of force vs X  b) 
Changes of coefficient of x component of force and position of center 
of cylinder vs time 
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Fig. 12 a) Changes of coefficient of y component of force vs X  b) 
Changes of coefficient of y component of force and position of center 
of cylinder vs time 
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Fig. 13 Changes of Nusselt number vs X  
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Fig. 15 Schematic of geometry 

15  

) 38 (  

(38) Y (t ) = X (t ) = 3 + Asin(
2
KC t ) 

 16  
 .

   
  

  
  

)a(  

  
  

)b( 
Fig. 16 a) Changes of coefficients of force vs X  b) Changes of 
coefficients of force and position of center of cylinder vs time 

16  (X (
 

6

D

D

D

D

D

3

3

6

x

y

Xc
= Yc

D

D

X

C
,

C

1 1.5 2 2.5 3 3.5 4 4.5 5
-8

-6

-4

-2

0

2

4

6

8

c

x
y

C

C
x
y

t*/KC

C
,

C

X

73 73.2 73.4 73.6 73.8 74
-8

-6

-4

-2

0

2

4

6

8

1

1.5

2

2.5

3

3.5

4

4.5

5

c

x
y

C
C

x
y

Xc

1 

2 

6 

5 

7 

8 

4 

3 



    

- -       

  

28  13951610  

 .    ( )  
 .

 .

  
 .

X    
17 

 . 
 .

 .
 .

 .

.  
  

  
)a(  

  
)b( 

Fig. 17 a)  Changes  of  Nusselt  number  vs  X  b) Changes of Nusselt 
number and the position of center of cylinder vs time   
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Fig. 18 a) Changes of coefficient of x component of force vs X   
b) Changes of coefficient of x component of force and position of 
center of cylinder vs time 
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Fig. 20 Effect of cylinder movement in fluid heating 
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