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 This paper presents the control of a quadrotor using nonlinear approaches based on the experimentally 
measured sensors data.  The main goal is the control and closed loop simulation of a quadrotor using 
feedback linearization and sliding mode algorithms. First, a nonlinear model of quadrotor is derived 
using Newton-Euler equations. To have a more realistic simulation the sensors noise performance was 
measured using a setup. Sensors data was measured under running motors. Since the experimental data 
for sensor had error and noise, Kalman filter was used to reduce noise effect. Results demonstrate good 
performance for Kalman filter and controllers. Results showed that feedback linearization and sliding 
mode controllers performance were good but angles changes were smoother on feedback linearization 
controller. With increasing uncertainty, feedback linearization performance was far from desired mode. 
The time to reach the preferred objective while increasing uncertainty had no significant impact on the 
performance of sliding mode controller. Thus feedback linearization controller added to PID is 
appropriate to maintain the quadrotor attitude while sliding mode controller has better performance to 
angle change and transient situations. 
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Table 1 List of forces and moments affecting quadrotor 
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Fig. 1 A schematic of quadrotor 
1   



    

        

  

34  13951610  

  
 

3-2 -  
      

     .    
   

(6)   

)6( 
=
=

 
  i 

b d   
(7) 

  
  

)7( 

( ) =

0
0

=

0
0

( + + + )
( )
( )

( + )

 

(8) 
 ( )   

)8( 

= ( ) + gsin
= ( ) gcos sin

= ( gcos cos +

= +

= +

= +

 

    (9) 
  

)9( 

= ( + + + ) = + + +
= ( )
= ( )
= ( + )

= + + +

 

    
        

     
    

 (10) [31].  

 

= (sin sin + cos sin cos )  

= ( cos sin + sin sin cos )  

g + (cos cos )  

= +  

= +  

-3   
     

          .(10) 
    

-     .
  ) 

 (     .  
     

    .
    x y    

  
-   ( , , )    

( , , )      
 .T   

        
   ) 11      (

   
   

)11( 

[ , , ] = T [ , , ]

T =

1 sin tan cos tan
0 cos sin

0
sin
cos

cos
cos

 

  
      .      

         .
    

x y   
(12)  

1-3 -   
          

   .              
 .   

      
       

      .
   

)10( = +  

)12( 

= g + (cos cos )

= +

= +

= +

 



    

        

13951610  35  

1      .
     

  

-
)  .12 (  

)13( ( ) = ( , ) + ( , ) ( ) 
q  u  fb 

    (14)   
  

)14( ( , ) =
d
d + = 0 

(14)        ( ) = ( ) ( ) 
 .  

(14)   
)15( = ( ) + ( ) 

, ,     
 .   

(16)   

)16( 
= ( , ) + ( , ) ( ) 

= + + ( ) 
( ) = 0 (17) 

  
)17( ( ) = + ( ) 

    f (q,t)   
= 0  ( )      

  
)18( ( ) = ( ) ( , ) tanh( ( )) 

( , )  . (19) 
  

)19( tanh ( ) =
( 1)
( + 1) 

     .( , )      
        

 .
    

)20( = [ , , , ] 
    

 (21)   

)21( =
1
2 . > 0 

(21)   
)22( = . 0 

(14) (15)       
   

      
  

1 Chattering 

       
 :, = 0  

      
(23)   

)23( 

= . tanh( ) 

= = =  

= (
cos cos

) ( ( ) . tanh( )) 
, , 

 z  .
tanh( )   

2-3 -   
    

     PID   
    24 

  

 (24) 

= cos cos (g + ) 

= ( + + ) 

= ( + + ) 

= ( + ) 
 

   
  

    .  PID   
     .

     
    

-4   
       

        
   .
    
       

 .   
         .

    
  .

         
          .

      
  



    

        

  

36  13951610  

  
       

       
    .

   
         .
    .

        
  

(25)  
   

)25( = +
( )

dt 
 

  .
 .(25) 

 (28-26) [32]:  
)26( = + × × +  
)27( = 0 =  

)28( = + =  

       
(26)       

    (28)      
  .(26)   (28)  (29)   

 [33]:  

)29( 

=  

= 0 1 + 0 +  

= [1 0] +  
      k b 

  .
       

(29) 
(30)   

)30( 

= A C (C C + )
= (A + B ) + ( C )
= A A + A C C A

 

    R Q 
    .

A B C 
(29)  .

(29)    
  

-5   
    
  
    .
      

    
 

1-5 -  
         

    .    
   
   .
   
   

2   

  .
  . 9 × 4.5 

 
  

 .
  .

  .
 .2 

   
         

       0.02   
  .     

)ADC (0-1023    .
     

  .   
    .    

   
          

R Q       
   

)31( = [0.0015] , = 0.00008 0
0 0  

3         
           . 

             .
     

  
2   

Table 2 Characteristics of laboratory setup‘s sensors 
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Fig. 2 View from the laboratory setup 
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Table 3 results STD in motor mode on and off 

   

 0.95 0.35 

 2.71 0.7 

  

 
Fig. 4 Angle output: motor on and Moving by hand 
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Fig. 5 Angle velocity output: motor on and Moving by hand 
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Fig. 3 Angle output: motor off without horizontal movement  
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Table 4 Initial and refrence conditions in quadrotor simulations 
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Table 5 Quadrotor characteristics 
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Table 6 The noise characteristics applied to the variables in simulations 
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Fig. 6 Roll angle output with feedback linearization controller 
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Fig. 7  Pitch angle output with feedback linearization controller 
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Fig. 8  Yaw angle output with feedback linearization controller 
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Fig. 9 Altitude output with feedback linearization controller 
9  

PID    
 .   7 

  
10 13      

      .
 k    10 100 

    .    
      

  
      

     
       
  .

      
  

 .      
  

7 PID   
Table 7 PID controller gains in feedback linearization 

     
KP 25 25 20 22 
KI 0.5 0.5 0.3 0.1 
KD 10 10 8 12 

  

  
 

Fig. 10 Roll angle output with sliding mode controller 
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Fig. 11 Pitch angle output with sliding mode controller 
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Fig. 12  Yaw angle output with sliding mode controller 
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Fig. 13 Altitude output with sliding mode controller 
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Table 8 Altitude and angles STD in hover situation 

 
  
 

 
(rad) 
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(rad) 
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5% 0.0072 0.0066 0.0069 0.0424 
10% 0.0070 0.0065 0.0067 0.0417 
25% 0.0076 0.0071 0.0075 0.0465 
50% 0.0067 0.0063 0.0066 0.0407 

100% 0.0064 0.0064 0.0066 0.0442 

 

5% 0.00871 0.00900 0.00891 0.0654 
10% 0.00871 0.00901 0.00892 0.0654 
25% 0.00872 0.00901 0.00892 0.0654 
50% 0.00874 0.00903 0.00893 0.0654 

100% 0.00874 0.00904 0.00895 0.0654 
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