
  

  13951610 42-50
                

  

    

     
mme.modares.ac.ir

  

    

    

    

    
                

 

  
:  Please cite this article using:

S. F. Ranjbar, H. Nami, A. Khorshid Ghazani, H. Mohammadpour Hydrogen production using waste heat recovery of MATIANT non-emission system via PEM electrolysis,
Modares Mechanical Engineering Vol. 16, No. 10, pp. 43-50, 2016 (in Persian)

 

*1234  

1 -   
2 -  
3 -   
4 -  

 *5147687464s.ranjbar@tabrizu.ac.ir  

      
  

 :17  1395  
 :12  1395  

 :11 1395  

  
 .

 .

 . 
  .

  .
  .

 .  

  
  

  
  

  
  

  

  

Hydrogen production using waste heat recovery of MATIANT non-emission 
system via PEM electrolysis 

Seyed Faramarz Ranjbar*, Hossein Nami, Alireza Khorshid Ghazani, Hamed Mohammadpour 

Department of Mechanical Engineering, Tabriz University, Tabriz, Iran 
* P.O.B. 5147687464, Tabriz, Iran, s.ranjbar@tabrizu.ac.ir 

ARTICLE INFORMATION  ABSTRACT 
Original Research Paper 
Received 07 July 2016 
Accepted 02 September 2016 
Available Online 02 October 2016
 

 In the current study, with the aim of power and hydrogen production, combination of Matiant cycle with 
an ORC unit and PEM electrolysis has been analyzed from the viewpoints of energy and exergy. Waste 
heat  of  the  Matiant  cycle  is  used  to  run  the  ORC.  Effect  of  some designing  variables,  i.e.  evaporator  
temperature, minimum temperature difference in heat exchanger, degree of superheating in ORC turbine 
inlet and isentropic efficiency of ORC turbine on the rate of produced hydrogen, ORC produced power 
and exergy efficiency of the combined system has been investigated. It is observed that, increasing the 
minimum temperature difference leads to decrease in the rate of produced hydrogen, ORC produced 
power and consequently exergy efficiency of the combined system. Also, change in the evaporator 
temperature optimizes the rate of produced  hydrogen, ORC produced power and therefore the exergy 
efficiency of the combined system. Also, results showed that increasing the degree of superheating in 
the ORC turbine inlet decreases the rate of produced hydrogen, ORC produced power and the exergy 
efficiency of the combined system. As expected, increasing the isentropic efficiency of ORC turbine 
leads to an increase in rate of produced hydrogen, ORC produced power and therefore the exergy 
efficiency of the combined system. 
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Fig. 1 Schematic diagram of the proposed combined system 
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Table 1 Input parameters for PEM electrolysis modeling 

    

1.0 = (atm) 80 (°C) 

50 ( m) 76 , (kJ/mol) 

96486 (C/mol) 18 , (kJ/mol) 

1.7 × 10  (A/m ) 14  

4.6 × 10  (A/m ) 10  
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Table 2 Comparison of the results obtained from the present work and 
those reported in the literature for the MATIANT cycle. 
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Fig.  2 Comparison of the results obtained from the present model and 
those reported in the literature for the PEM electrolysis 
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Fig.  3 Effect of evaporator temperature on the rate of produced 
hydrogen and ORC produced power 
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Fig.  5 Minimum temperature difference between the hot fluid and 
ORC working fluid 
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Fig. 4 Effect of evaporator temperature on the exergy efficiency of the 
combined system 
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Fig.  6 Effect of the minimum temperature difference of heat 
exchanger on the rate of produced hydrogen and ORC produced 
power 
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Fig.  7 Effect of the minimum temperature difference of heat 
exchanger on the exergy efficiency of the combined system 
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Fig. 8 Effect of superheating degree of ORC turbine inlet on the rate 
of produced hydrogen and ORC produced power 
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Fig.  9 Effect of superheating degree of ORC turbine inlet on the 
exergy efficiency of combined system 
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Fig. 10 Effect of isentropic efficiency of ORC turbine on the rate of 
produced hydrogen and ORC produced power 
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Fig. 11 Effect of isentropic efficiency of ORC turbine on the exergy 
efficiency of combined system 
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