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In this paper a nonlinear controller is designed for micro-beam’s deflections under mechanical shock 
effects. The micro-beam is supposed to undergo mechanical shocks. Mechanical shocks are one of the 
failure sources and the controller is to considerably suppress shock’s unfavorable effects. Half-Sine, 
rectangular and triangular pulses are chosen as reference shock signals to represent true complicated 
shock signals in nature which consist of different harmonics. Two layers of electrodes are placed in both 
sides of the micro-beam and are used to actuate the micro-beam by different voltage levels. Upper layer 
is specifically meant for control purpose. Nonlinear equations governing micro-beam’s deflection 
dynamics are derived, discretized by Galerkin method to a set of nonlinear duffing type ODEs and used 
to investigate micro-beams response to each shock input signal. Controller design is based on a simple 
nonlinear model formed by micro-beam’s first mode shape. Proper second order behavior is generated 
by feedback linearization method as controller logic. Finally, controller performance and shock 
rejecting capability are evaluated by numerical simulations. Controller is shown to be very effective in 
diminishing shock unfavorable effects and postponing pull-in instability by numerical simulations. 
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Fig.  1 Simple Shock pulses used to represent real shock pulses. A) 
Rectangular Pulse, B) Half-Sine Pulse, C) Triangular Pulse 
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Fig.  2 Schematic of clamped-clamped Microbeam suspended between 
two layers of piezoelectric  
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Fig.  3 Micro-beam’s response to shock input without controller or 
actuation signal interference, a) Micro-beam’s response to half-sine 
shock pulse of 1000g amplitude, b) Micro-beam’s response to 
triangular shock pulse of 1000g amplitude, c) Micro-beam’s response 
to rectangular shock pulse of 950g amplitude 
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Fig. 4 Controller effect on micro-beam’s response to rectangular 
shock pulse of 1000g amplitude  
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Fig. 5 Controller effect on micro-beam’s response to triangular shock 
pulse of 1000g amplitude  
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Fig.  6 Controller effect on micro-beam’s response to half-sine shock 
pulse of 1000g amplitude    
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