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Chattering is a kind of self-excited vibration encountered in different machining processes such as 
milling and turning. This type of self-excited vibration rapidly develops after commencement and 
destabilizes the whole process.  This phenomenon leads to, among other issues, increased noise, wavy 
surface finishes, discontinuous chips, and failure in the tool or machine parts. The depth of cut is the 
main parameter in the occurrence of chattering in machining processes. Avoiding the critical depth of 
cut ensures the stability of the process. Process modeling is a way to obtain the critical depth of cut. The 
vibration-assisted turning process has many advantages and is of a different nature than the 
conventional machining. In this paper, the vibration-assisted turning process is modeled and 
numerically solved and the critical depth of cut is obtained. Validation of the results is performed using 
experimental data and comparison with conventional machining. In the vibration-assisted turning 
process, higher stability is obtained with lower ratios of cutting duration to the total vibration period. 
This ratio is directly proportional to vibration frequency and amplitude and is inversely proportional to 
the cutting speed. 
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Fig.  2 Schematic figure of tool vibration in different depth of cut a) 
unstable b) margin of stability c) stable  
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Fig. 1  Variations in chip thickness  
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1  CNC-TME40 
Table 1 Dynamic properties of CNC-TME40 lathe 

  

 (N/m)  (Ns/m)  (kg) 
618150 2764.8 36 

 2  
Table 2 Cutting parameter of turning process  

 
 (mm)  (N/mm2) 
0.1 250.46 

)9 (
0 10   )4( )5 ( ."

4"  
  ."5" 

 ) a)  (b ( 

2-1 -  
 .

 .
 -1  .

-
 .

6 
 .

( )   

  .         

1 Dormand–Prince (RKDP) method
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Fig.  3 Results of first model a) Conventional turning b) Vibrational 
turning 

3 a ( b ( 
  

Depth of cut=2.3 mm, Spindle speed =200 rpm, 
Feed rate=0.1 mm/rev, Frequency =20 kHz, Amplitude =1 mm 
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Fig. 4 Tool separation and stability increase in vibrational turning 

4   
Depth of cut=2.75 mm, Spindle speed =400 rpm, 

Feed rate=0.1 mm/rev, Frequency =0.11 Hz, Amplitude =1 mm 

 

a 

 

b 
Fig. 5 Results of second model a) Conventional turning b) Vibrational 
turning 
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Depth of cut=2.3 mm, Spindle speed =200 rpm, 
Feed rate=0.1 mm/rev, Frequency =20 kHz, Amplitude =1 mm 
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Fig.  6 Depth of cut resulted from modeling (square marker) vs. closed 
form solution of stability lobe (solid line) in conventional turning of 
CNC-TME40 lathe machine 

6   ) 
 )  CNC-

TME40  
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1 Bisection method



    

     

13951610  81  

5  .

3  .
4  

"7 8"  .

 .
  

3-1 -  

 
 .    

 3   
Table 3 Input factors of experimental test and its levels  

   
 0,0.4,7,10,13 m 
 50,100,200,300,400 rpm 
 0.05,0.1,0.15,0.2,0.25 mm/rev 

4   
Table 4 Experimental test conditions 

  rpm 50,100,200,300,400 
  m/min  4.7,9.4,19,28,37 

  mm/rev 0.05,0.1,0.15,0.2,0.25 

 
 

  = 5° 
    = 0° 

    
   AL 7075 

  mm 30 
   mm 300  
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Fig. 8 Experimental setup (Instruments, Generators, Scopes, etc.) 
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Fig. 7 Experimental setup (Work-piece, Tool, Instruments, etc.) 
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Sensor 

Horn 

Tool 

Dynamometer 
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Fig. 9 Stability border in conventional and vibrational turning 
 9     

Feed rate=0.1 mm/rev, f=20 kHz 
 

 

Fig. 10 Modeling results for critical depth of cut  
10    

Feed rate=0.1 mm/rev, f=20 kHz 
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Fig. 13 Probability plot shows normality of errors 
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Fig. 14 Errors are normal 
14   

  
a b 

Fig. 11 Chips a) with chatter mark b) without chatter 
11  a (b (  

 
  

Fig. 12 Mean values of depth of cut vs. input parameter levels 
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Fig. 15 Residuals are in a random pattern 
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Fig. 16 Interaction plot for depth of cut vs. input parameter levels 
16   

  
Fig. 17 Depth  of cut vs. spindle speeds and different tool vibration 
amplitude 

17    
5   

Table 5 Predicted and experimental test depth of cut 

  

         

(%)   (mm)   (mm)  (rpm)  (mm/rev)  (mm)    
18.5 2.6310 2.1426 400 0.15 4 1 
9.5 1.8480 2.0236 200 0.20 10 2 
45 2.0873 3.0389 300 0.15 13 3 
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