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In this article, an immiscible two-phase flow in two dimensional ordinary and modified T-junction 
microchannels is numerically studied. To this approach, the Lattice Boltzmann method with Pseudo-
Potential model is used. The accuracy of the present model is examined by the Laplace test, drop 
contact angle, and drop formation in an ordinary T-junction microchannel. The comparison shows that 
the present results have good agreement with previous numerical and experimental data. The effects of 
various parameters including Capillary number, flow rate ratio, width ratio, and drop contact angle on 
the width of the drop and on the distance between drops for ordinary and modified T-junction 
microchannels are investigated in detail. The results reveal that by simple modifications to the ordinary 
T-junction, smaller drops and lower distances between them are generated in the comparison of 
ordinary T-junction geometry under the same conditions. On the other hand, this study demonstrates 
that the multiphase flows in micro-devices are very sensitive to even small changes in the channel 
geometry. It also indicates that Lattice Boltzmann method with Pseudo-Potential model is an effective 
numerical technique to simulate the generation of drops in microchannels. 
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Fig.  1 A schematic illustration of 2D microchannel (a: the ordinary T-
shaped and b: the modified T-shape) 

1  : )    :
  

1Bounce Back 

  .  

4-1 -  
 

 ( )   
  )16(=                                                                                

 R  .
200×200 

 ."2" 

  . 
   
  

4-2 -   

 
) 3 .(

  )17]  (36.[  
 

)17(  cos =  

s1s2 12 

 
]  36 [)18(  G12G1s G2s 

  
 

)18(  cos =  

  

 
Fig. 2 Laplace test 
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Fig. 3 Contact angle  
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Fig. 4 Different contact angle (a: =170 , b: =150 , c: =120 , 
d: =90 , e: =60  and f: =30 ) 
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Fig. 5 Comparison of contact angles between present result with Eq. 
(18) and numerical result of Huang et al [36] at different G2s. 
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Fig.  6 Comparison between present numerical results with 
experimental result of van Steijn and et al. [37] (bottom row) 
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Fig. 9 Normalized length of droplets versus the flow rate ratio at a fixed 
Ca = 0.00054 

9 Ca=0.00054  

  
Fig. 10 Normalized distance between droplets versus the flow rate ratio 
at a fixed Ca = 0.00054  

10 Ca=0.00054 
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Fig. 7 Effect of Caon the flow regime for Q=3, W=0.5 and =170  (a: 
Ca=0.089, b:  Ca=0.0163 and c: Ca=0.0054) 
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Fig. 8 Effect of Q in the squeezing regime with Ca=0.00054, 
=170  and W=l (a: Q=0.32, b: Q=0.5 and c: Q=1) 
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Fig. 11 The droplet formation at Ca=0.0054, Q=3 and =170  for four 
different width ratios (a: W=0.5, b: W=1, c: W=1.5 and d: W=2) 
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Fig. 12 The droplet formation at Ca=0.0054, Q=3.2 and W=1 for four 
different width ratios (a: = 90 , b: = 120 , c: = 150  and d: 

=170 ) 
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Fig. 13 Flow pattern in ordinary T-channel and modifiedT-channelsat 
Ca=0.00814 ,Q=2 ,W=0.5and = 170  (a: =0, b: = 0.25 , = 0.5 
and = 0.75) 
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Fig. 14 Flow pattern in ordinary T-channel and modified T-channels at 
Ca=0.005 ,Q=3 ,W=0.5and = 170 (a: =0, b: = 0.25 , c: = 0.5 
and d: = 0.75) 
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Fig. 15 a: Normalized length of droplets versus  and b: 
Normalized distance between droplets of droplets versus  
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