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 In this study, the double stage mixed refrigerant LNG system is investigated, which is known for having 
the highest efficiency among the liquefaction cycles. The main purpose is to evaluate the performance 
of double stage mixed refrigerant LNG system due to variations on the environmental and operating 
conditions of feed. Temperature, pressure and feed gas compositions are considered as variable 
environmental conditions during liquefaction processes. A basic system has been chosed to view the 
response of the DMR liquefaction system to these changes. Results show that with decreasing 
temperature and increasing pressure of feed natural gas, specific shaft work decreases. Moreover, since 
in this case, minimum approach temperature in heat exchangers are reduced only slightly from allowed 
value (3°C). Therefore this adventage can be used with accepting a slightly lower safety factor than the 
optimal case. Increasing temperature and decreasing pressure of feed natural gas cause increasing the 
specific shaft work as well as temperature cross occurance in heat exchangers and therefore these areas 
should be prevented using control strategies. Also, any changes in mole fraction of natural gas 
components make temperature cross in heat exchangers. Finally, due to the change of the natural gas 
components mole percentage, during the life of the well, the refrigerant composition in the cycle should 
be optimized regarding the new conditions. 
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Fig. 1 LNG process in double stage mixed refrigerant cycle 
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Fig. 2 Curve of temperature difference between warm and cold 
streams of heat exchangers in base case   
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Fig. 3 Composite curve of heat exchangers 1, 2 in base case in a and b 
respectively 
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Fig. 4 Composite curve of heat exchangers 3, 4 in base case in a and b 
respectively 
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Fig. 5 Effect of NG temperature on specific shaft work and minimum 
approach temperature of heat exchanger 1 
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Table 3 Obtained results for overall heat transfer coefficient and area in 
heat exchangers and inlet volume flow rate to compressors in base case 
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Fig. 6 Curve of temperature difference between warm and cold streams 
in the heat exchangers in state =  
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Fig. 7 Curve of temperature difference between warm and cold streams 
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Fig. 8 Effect of NG pressure on specific shaft work and minimum 
approach temperature of heat exchanger 4 
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Fig. 10 Curve of temperature difference between warm and cold 
streams in the heat exchangers in state = 7150kpa 
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Fig. 11 Effect of varying the mole fraction of Methane in composition 
of natural gas on specific shaft work and minimum approach 
temperature of heat exchanger 3 
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Fig. 12 Curve of temperature difference between warm and cold 
streams in the heat exchangers in state CH (NG) = 78.75% 
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5   
Table 5 List of the results of present study 
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