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 The main task in finite volume methods (FVM) is to estimate proper values on the cell faces based on 
the calculated values on the nodes or cell centers. In this way, upwinding schemes are the most 
successful schemes for estimation of values on the control volume faces. These schemes have been 
developed in FVM for various techniques with proper accuracy on different kinds of structured and 
unstructured grids. In this research, the physical influence scheme (PIS) is developed to the cell-
centered FVM in an implicit coupled solver and the results are compared with other two main branches 
of upwinding methods: exponential differencing scheme (EDS) and skew upwind differencing scheme 
(SUDS). Accuracy of these schemes is evaluated in lid-driven cavity flow at Re = 400-10000 and 
backward-facing step flow at Re = 800. Simulations show considerable difference between of the results 
EDS scheme with benchmarks, especially for lid-driven cavity flow at high Reynolds numbers which 
occurs due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results in 
backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in 
cavity flow can be related to its non-pressure sensitivity between cell face and upwind points which is 
critical for such vortex dominant flows. Instead, the PIS scheme by applying a momentum equation 
between the cell face and upwind points, is able to capture flow vortices properly and matching well 
with benchmarks. 
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Fig. 1 Right: Nomenclature for cell faces of the cell P and its 
neighboring control volumes, Left: co-located variable storage. 
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Fig. 2 An element constructed from cell centers surrounding the cell 
face e  of the cell P, and representation of the skew upwind point for 
face e; here, cell centers S and P are the right (upr) and left (upl) points 
of the upwind point (up), respectively. 
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Fig. 4 Lid-driven cavity flow field, boundary conditions, grid zones, 
and its dominant flow structures. 

  4   

  
Fig. 5 The grid dependency study in lid-driven cavity flow according to 
maximum u and v velocities at mid sections for Re = 1000 and 3200. 
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 ( )Re = 400 (a) Re = 400  ( )Re = 1000 (b) Re = 1000  ( )Re = 3200 (c) Re = 3200 

   

 ( )Re = 5000 (d) Re = 5000  ( )Re = 7500 (e) Re = 7500  ( )Re =10000 (f) Re = 10000 

Fig. 7 Velocity profiles in lid-driven cavity flow at mid sections for various upwinding schemes. 
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 ( ) (a) Non-orthogonal grid  ( )Re = 3200 (b) Re = 3200  ( )Re = 7500 (c) Re = 7500 

Fig. 8 Evaluation of the various upwinding schemes in lid-driven cavity flow with non-orthogonal grid at Re = 3200 and Re = 7500. 
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 ( )Re = 400 (a) Re = 400  ( )Re = 5000 (d) Re = 5000 

  

 ( )Re = 1000 (b) Re = 1000  ( )Re = 7500 (e) Re = 7500 

  

 ( )Re = 3200 (c) Re = 3200  ( )Re = 10000 (f) Re = 10000 

Fig. 9 Streamlines in lid-driven cavity flow for various upwinding schemes at different Reynolds numbers. 
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 ( ) (a) Primary vortex  ( )BL1 (b) BL1 vortex  ( )BR1 (c) BR1 vortex 
Fig. 10 Coordinates of the center of lid-driven cavity vortices at various Reynolds numbers and upwinding schemes. 
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Fig. 12 Grid dependency study in BFS flow for PIS scheme according 
to velocities at x = 7H. 
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Fig. 13 Convergence histories of various upwinding schemes in BFS 
flow. 
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 ( )u x=7H (a) u-velocity at x=7H  ( )v x=7H (b) v-velocity at x=7H  ( ) (c) lower wall pressure 

   

 ( )u x=15H (d) u-velocity at x=15H  ( )v x=15H (e) v-velocity at x=15H  ( ) (f) upper wall pressure 
Fig. 14 Velocity profiles at x = 7H and x = 15H and pressure profiles on the lower and upper walls in backward-facing step for various upwinding 
schemes. 
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Fig. 15 Streamlines and vortices downstream of the backward-facing step for various upwinding schemes. 
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