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 Sheet Metals are widely used in different industries such as ship building. One important subject in 
these industries is to create the desired sheets through line heating process. In this paper, first, the 
simulation of heat transfer between a gas torch and a plate during the line heating process is 
investigated. Impingement jet model is used to simulate the effect of a heat source (flame) and air 
cooling on the plate by using the commercial engineering software, FLUENT. Then, the computed 
temperature distribution by FLUENT is fed into the ANSYS FEM package for thermo Elasto-Plastic 
deformation analysis and the results are validated. Process execution needs heat paths and heat 
conditions. For this purpose heat paths of the cylindrical shape were obtained based on the Strain-Based 
Method. For thermal conditions a neural network was trained. In this regard, close to 63 different 
situations in different powers and torch speeds were run. Finally, to verify the thermal characteristics 
obtained for the cylindrical shape, paths and thermal conditions obtained were passed on a flat sheet 
metal by simulation and the result was compared with the desired shapes. It was shown that the Strain-
Based Method is very practical in determining the thermal paths. 
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Fig. 1 Flat plate and fabricated plate after bending in Line Heating 
Process [14] 
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Fig. 2 Flame properties 
2  

 

Fig. 3 Air properties used for cooling 
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Fig. 4 Thermal Properties of steel sheet 
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Fig. 5 Halved areas, Y-Z view (bottom figure)– Symmetry boundary 
condition planes, X-Y view (top figure) 
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Fig. 6 Sheet mechanical properties 
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Fig. 7 Boundary conditions, (A) Zero movement along y axis, (B) 
Symmetry boundary condition in plate symmetry plane 
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Fig. 9 Sample of minimum principal strain contour in flattened pillow 
shape  
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Fig. 10 Minimum principal strain vectors on the middle surface of 
flattened pillow shape 
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Fig. 11 Bending strain vectors on upper surface of flattened pillow 
shape 
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Fig. 12 Comparison of this research with Woo's simulation 
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Fig. 13 Data reading place for deformation 
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Fig. 14 Deformation comparison of this research and the Biswas' 
experimental work 
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Fig. 15 Middle point temperature comparison of this research with 
Biswas's experimental work 
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Fig. 16 Maximum sheet metal deformation – v = 5mm/s – 
Thickness=8mm 

16 –  v = 5mm/s–  = 8mm 

 

Fig. 17 Maximum sheet metal deformation – v = 5mm/s – 
Thickness=6mm 
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Fig. 19 Lateral sheet metal deformation, Vc = Cool velocity, Flame 
outlet velocity = 130 m/s, Flame movement velocity = 5 mm/s 
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Fig. 20 Comparison of trained neural network output with the 
simulation results  
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Fig. 21 Elastic analysis on desired cylindrical shape to find minimum 
principal strain distribution  
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Fig. 22 Obtained paths and heat conditions for desired cylindrical shape 
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Fig. 23 Validation of obtained paths and heat conditions to achieve the 
cylindrical shape (half of the plate)  
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Fig. 24 Plate deformation after applying paths and heat conditions in 
the simulation of flame heat source to get pillow shape from the initial 
flat plate; (half of the plate) 
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Fig. 25 Obtained deformation after applying paths and heat conditions 
in the simulation of flame heat source to get pillow shape from the 
initial flat plate; (half of the plate)  
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