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In the current study a combined heat and power (CHP) system based on diesel engines is studied. After 
modeling the different components of a CHP system, the system is investigated parametrically 
according to first and second laws of thermodynamics. In this investigation instead of modeling the air 
standard cycle, the fuel air standard cycle and fuel combustion are simulated, which leads to more 
accurate results. However, a standard cycle has many differences with an actual cycle, and therefore the 
results of its analysis will be, to some extent, different from the results of analyzing the corresponding 
actual cycle. Therefore, the exhaust gas from combustion chamber of a diesel engine is also used to 
simulate the CHP system, and the heat exchanger of the CHP is investigated from exergetic and 
economic viewpoints. It was seen that, applying the pre-described system, it is possible to warm up 
0.17kg/s water from 25°C to 68.64°C. This enhances the overall efficiency of the system about 20%, 
raising it up to 80%. Exergy destruction in heat exchanger is slightly high which is due to heat transfer 
process and high temperature difference in the heat exchanger. 
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Fig. 1 Schematic of the studied CHP system[19] 
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Fig. 2 Changes of engine efficiency with air-fuel ratio 
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Fig. 3 Effect of compression ratio on the engine efficiency 
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Fig. 4 Exergy destruction for different parts of the system 
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Fig. 5 Exergy destruction for different parts of the system 
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Fig. 6 Variations of exergy efficiency of the engine with air-fuel ratio 
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Fig. 7 Effect of compression ratio on the total exergy destruction of the 
system 
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Fig. 8 Effect of compression ratio on the total exergy efficiency of the 
system 
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Fig. 9 Effect of applying CHP on the diesel generator efficiency for 
different AFs 
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Fig. 10 Change of mass fraction of O2 and CO2 in the products with air-
fuel ratio 
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Fig. 11 Variations of exergy efficiency with the HE efficiency 
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Fig. 12 Variations of exergy destruction with the HE efficiency 
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Fig. 13 Changes of initial cost of HE with HE efficiency for different 
temperatures of exhausted gas 
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Fig. 14 Changes of exergy destruction costs in an hour with HE 
efficiency 
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Fig. 15 Variations of exergoeconomic factor with the HE efficiency 
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1   
Table 1 Thermodynamic properties for different points of the cycle 

    
(°C) 

 
(kPa)  

 
(kJ/kg)  

 
(kJ/kg.K)  

 
(m3/kg)  

 
(kg/s)  

 
(kJ/kg)  

 
(kJ/kg)  

 
(kW)  

1  25 101.3 -164.4 6.955 3.553 0.2 0 2.528 0.5056 
2  160.8 303.9 -24.98 7.021 1.724 0.2 119.7 2.528 24.44 
3  793.2 9046 674.1 7.021 0.1149 0.2 818.8 2.528 164.3 
4  1938 9046 2170 7.892 0.295 0.21 1996 10.02 421.2 
5  724.2 318.1 651 7.892 1.724 0.21 476.5 10.02 102.2 
6  514.8 106 411.3 7.947 8.969 0.21 220.4 10.02 48.39 
7  123 106 -11.89 7.207 4.509 0.21 17.83 10.02 5.848 
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