
Arc
hive

 of
 S

ID

  

  13951611 69-80
                

  

    

     
mme.modares.ac.ir

  

    

    

    

    
                

 

  
:  Please cite this article using:

Sh. Omidvar Oghani, A. Teymourtash, Numerical study of natural convection heat transfer to supercritical carbon dioxide in a vertical tube using Span and Wagner multi-parameter 
equation of state, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 69-80, 2016 (in Persian) 

          
  

12*  

1-           
2-   
*   91775-1111teymourtash@um.ac.ir  

      
  

 :26 1395  
 :10  1395  

 :05 1395  

                   
             .      

                  .  
           .         

                       
            .       305  312   

 7.5  9            
          .     

           160%  
118% .  

  

  
  

  

  

Numerical study of natural convection heat transfer to supercritical carbon 
dioxide in a vertical tube using Span and Wagner multi-parameter equation of 
state 

Shahrouz Omidvar Oghani, Alireza Teymourtash* 

Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 
* P.O.B. 91775-1111, Mashhad, Iran, teymourtash@um.ac.ir 

ARTICLE INFORMATION ABSTRACT
Original Research Paper
Received 16 July 2016
Accepted 01 October 2016
Available Online 26 October 2016 

Supercritical fluids have substituted non-super critical fluids in some areas of industry because of their 
unique characteristics and have been the subject of numerous experimental, numerical and analytic 
studies since their discovery. In this study laminar natural convection between a hot vertical tube with 
constant temperature and supercritical carbon dioxide with uniform temperature at inlet is simulated by 
utilizing a numerical model. The simulation is a two-dimensional, pseudo-transient numerical model 
based on finite volume method. The main objective of this study is to investigate and analyze the effect 
of severe property variations of supercritical carbon dioxide on the flow and temperature field of natural 
convection that ultimately affect heat transfer rates with respect to non-critical natural convection. 
Numerical simulations have been carried out for temperature and pressure ranges of 305K to 312K and 
7.5MPa to 9MPa respectively. Span and Wagner’s multi-parameter equation of state have been used 
directly to determine carbon dioxide properties around pseudo critical temperature for the first time. 
Results indicate an increased rate of total heat transfer up to 160% near pseudo-critical temperature and 
118% in other temperatures for supercritical natural convection with respect to ideal gas assumption. 
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Fig. 1 Problem geometry and utilized control volume 
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Fig. 2 Solution grid at inlet and tube wall 
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Table 1 Critical Properties of Various Fluids 

  )MPa(  )K(  
  22.06  647.1  

 7.38  304.1  
  4.60  190.4  
  4.87  305.3  

  8.09  512.6  
  11.35  405.5 

8 Multi-parameter equation of state
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Fig. 3 Calculated density of supercritical carbon dioxide 
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Fig. 4 Calculated isobaric heat capacity of supercritical carbon dioxide 
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Fig.  5 Calculated thermal expansion coefficient of supercritical carbon 
dioxide 
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Fig. 6 Calculated Kinematic viscosity of supercritical carbon dioxide 
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Fig. 7 Calculated thermal conductivity of supercritical carbon dioxide 
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Table 3 Aspect ratio independence analysis 

    

10  6.984  

20  6.559  

30  6.510  

40  6.485 

50  6.476  

60  6.493  

80  6.505 

 
Fig. 8 Comparison of numerical and semi-empirical results inside a 
tube [12] 
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Fig. 9 Nusselt numbers for a tube of 0.2mm diameter and temperature 
difference of 1 degree at 8MPa 
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Fig. 10 Nusselt numbers for a tube of 0.4mm diameter and temperature 
difference of 1 degree at 9MPa 
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Fig.11 Nusselt numbers for a tube of 0.4mm diameter and temperature 
difference of 1 degree at 8MPa 
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Fig. 12 Nusselt numbers for a tube of 0.4mm diameter and temperature 
difference of 1 degree at 7.5MPa 
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Fig. 13 Calculated Nusselt numbers for a tube of 0.3mm diameter and 
temperature difference of 2 degrees at 8MPa 
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Fig. 14 Calculated Nusselt numbers for a tube of 0.3mm diameter and 
temperature difference of 3 degree at 8MPa 
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Fig. 15 Calculated Nusselt numbers for various temperature differences 
between surrounding and wall of 0.3mm tube at 8MPa 
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Table 4 Pseudo-critical temperatures of carbon dioxide at different 
pressures 

 )MPa(   (*) )K(  

7.50  304.86  
8.00  307.83  
8.50  310.57 
9.00  313.29  

(*)  304.25K 7.39MPa   

 
Fig. 16 Velocity profiles obtained from current study in various 
sections, T=1, p=8MPa, Tavg=307.5, D =0.4mm 

16  T=1 
p=8MPa, Tavg=307.5, D =0.4mm  

 
Fig. 17 Velocity profiles obtained from current study in various 
sections, T=2, p=8MPa, Tavg=307.75, D =0.3mm 
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Fig. 18 Velocity profiles obtained from current study in various 
sections, T=3, p=8MPa, Tavg=306, D =0.3mm 
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Fig. 19 Velocity profiles obtained from current study in various 
sections, T=1, p=8MPa, Tavg=307.5, D =0.2mm 
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Fig. 20 Vertical velocity gradient at R=0.05mm for T=2,  p=8MPa, 
Tavg=307.75, D =0.3mm 
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Fig. 21 Calculated contour of special heat capacity at constant pressure 
for carbon dioxide, T=3, p=8MPa, Tavg=308.25, D =0.3mm 
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T=3, p=8MPa, Tavg=308.25, D =0.3mm 
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Fig. 22 Calculated contour of thermal conductivity for carbon dioxide, 

T=3, p=8MPa, Tavg=308.25, D =0.3mm 
22     T = 3 

p=8MPa, Tavg=308.25, D =0.3mm 

 
Fig. 23 Calculated contour of viscosity for carbon dioxide, T=3, 
p=8MPa, Tavg=308.25, D =0.3mm 

23    T=3, p=8MPa 
Tavg=308.25, D =0.3mm 

 
Fig. 24 Calculated contour of thermal expansion coefficient for carbon 
dioxide, T=3, p=8MPa, Tavg=308.25, D =0.3mm 
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Fig. 25 Calculated contour of density for carbon dioxide, T = 3, 
p=8MPa, Tavg=308.25, D =0.3mm 

 25   T=3,  p=8MPa 
Tavg=308.25, D =0.3mm 

 
Fig. 26 Calculated contour of temperature for carbon dioxide, T=3, 
p=8MPa, Tavg=308.25, D =0.3mm 

26    T=3, p=8MPa 
Tavg=308.25, D =0.3mm 
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Fig. 27 Contour of special heat capacity at constant pressure for carbon 
dioxide, T=3, p=8MPa, Tavg=312, D =0.3mm 

 27    
T=3, p=8MPa, Tavg=312, D =0.3mm 

 
Fig. 28 Calculated contour of density for carbon dioxide, T = 3, 
p=8MPa, Tavg=312, D =0.3mm 

 28    T=3,  p=8MPa 
Tavg=312, D =0.3mm 

 
Fig. 29 Contour of special heat capacity at constant pressure for carbon 
dioxide, T=3, p=8MPa, Tavg=305.5, D =0.3mm 
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T=3, p=8MPa, Tavg=305.5, D =0.3mm 

 
Fig. 30 Calculated contour of density for carbon dioxide, T = 3, 
p=8MPa, Tavg=305.5, D =0.3mm 
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Tavg=305.5, D =0.3mm 
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