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In this research the transient flow analysis in viscoelastic pipes considering Fluid Structure Interaction 
has been performed utilizing a newly developed formulation of Transfer Matrix Method in frequency 
domain. To obtain this extended form of TMM, mathematical processes were accomplished. Time 
domain governing equations have been transformed to frequency domain and then a suitable matrix 
form of them is used to study transient flow due to sudden valve closure. Obtaining a set of algebraic 
equations instead of integral equations and the ability to analyze this phenomenon without the need to 
solve complex convolution integral, are some of the benefits of the frequency domain tools that have 
been applied in this research. To verify the model, initially two cases of rigid and elastic pipe wall have 
been analyzed. Results showed good conformity compared to experimental data and available analytical 
solution. Then having a set of reliable experimental data of transient flow in VE pipe, MatLab code was 
adopted to the model and  here also results were in good agreement with the experimental results. 
Moreover,  it  has  been  shown  that  this  model  will  be  a  suitable  tool  for  parametric  analysis  and  for  
determining the critical situations of the system. The results obtained from this research prove that using 
frequency domain tools will lead to an effective and precise model for simulating the transient flow 
characteristics in VE and also normal transmitting pipelines. 
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Fig. 1 Model for viscoelastic solid, a: Kelvin-Voigt single element, b: 3 
parameter model, c: higher order model 
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Fig. 2 Characteristics of a sample system  
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Fig. 3 Periodic pulse applied from the Fourier series 
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Fig.  4 Results  for  head  variation  at  downstream  end  from  TMM  &  
MOC 
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Fig.  5 Enlarged view of Results for head variation at downstream end 
from TMM & MOC 
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Fig. 6 head variation at downstream end, experimental data of Covas et 
al vs results of proposed model 
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Fig. 7 Distribution of axial strain amplitude at theoritical frequency 
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Fig.  8 head variation at downstream end, viscoelastic pipe vs elastic 
pipe (doted line), Results of this research  
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Fig.  9 Frequency response diagram of head at downstream end for 
Elastic and Viscoelastic pipe 
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Fig. 10 Frequency response diagram of discharge at upstream end for 
Elastic and Viscoelastic pipe 
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