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The hysteresis nonlinearity of the Magnetic Shape Memory Alloy (MSMA) actuator limits its control 
applications. To tackle the problems, usually the hysteresis behavior of these materials is modeled.  
Prandtl-Ishlinskii (PI) model is more practical in this area because of its simplicity and having analytical 
inverse. Two versions of this model, entitled: rate-independent model and rate-dependent model, have 
been developed. Experimental results show that with increasing input frequency, the shape of hysteresis 
loops is amplified. In this study, by using experimental test setup, the input voltage is applied to the 
MSMA actuator at frequencies 0.05- 0.4 Hz and the displacement output is captured by a proximity 
position sensor, Also the MSMA behavior is modeled by generalized rate-dependent Prandtl-Ishlinskii 
(GRDPI) model and modified generalized rate-dependent Prandtl-Ishlinskii (MGRDPI) model. The 
modified version of the model is presented by the authors to enhance the ability of the GRDPI model for 
describing the asymmetric and saturated hysteresis behavior in MSMAs by hyperbolic tangent function 
in the model output. For training of the mentioned models, the actuation frequencies 0.05 and 0.2 Hz are 
selected and the model parameters of each model are also obtained by using Genetic Algorithm (GA). 
For validation of the models the hysteresis loops at frequencies 0.1, 0.3 and 0.4 Hz are selected. The 
result shows that, due to using hyperbolic tangent function in the model output, the modified version of 
the GRDPI model can describe the hysteresis behavior in MSMAs more accurately. 
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Fig. 1 Furniture of the experimental setup on fixture  
1   

  

Fig.  2 Structure of the experimental setup for characterization of 
hysteresis nonlinearities of a MSMA actuator  

2         

  

Fig.  3  Measured hysteresis loops of MSMA actuator under different 
actuation inputs: (a) v(t) = 2.25 sin(2 ft)+2.25, f = 0.05, 0.1, 0.2, 0.3 
and 0.4 Hz 

3     
  v(t) = 2.25 sin(2 ft)+2.25   0.05 0.1 0.2 
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Table  1 Identified Parameters of rate-dependent Prandtl-Ishlinskii 
models  

    
 

7  7  
3 3  
3 3  

0.3178  3.8061  
7.4497 5.8270  
-1.9510 0.0112  
1.9115 1.8742  
4.9253 1.8741   
4.9285 -0.5567  
6.5700  1.8742  
7.4962 1.8735  
7.8387 1.8739  
3.3392 1.8748  
0.3330 3.6771  
0.0685 0.4800   
0.1275 -0.4949  
 0.0876 0.0930  
-0.2592 -3.8006  
-0.1412 0.0298  
-0.6947 -0.0212  
-0.5316  0.0029  
-0.1807    
 0.4802    
-2.1901   
3.7547   
0.4773   
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Fig. 6 Comparison of absolute error of GRDPI and MGRDPI models at 
the frequency of 0.05 Hz 

 6              
 0.05   

 

 
 

Fig. 7  Comparison of absolute error of GRDPI and MGRDPI models 
at the frequency of 0.2 Hz 

 7              
 0.2   

  

Fig.  4 Comparison of GRDPI and MGRDPI models outputs  with 
respect to the experimental data at the frequency of 0.05 Hz 
(training process) 

4        0.05  ) 
( 

  
Fig.  5 Comparison of GRDPI and MGRDPI models outputs  with 
respect to the experimental data  at the frequency of 0.2 Hz(training 
process) 

5      0.2   )    
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Fig.  8  Comparison of GRDPI and MGRDPI models outputs  with 
respect to the experimental data  at the frequency of 0.1Hz(validation) 

 8        0.1  )  

 
Fig. 9  Comparison of absolute error of GRDPI and MGRDPI models 
at the frequency of 0.1Hz(validation) 
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 0.1  )  

 
Fig. 10  Comparison of GRDPI and MGRDPI models outputs  with 
respect to the experimental data  at the frequency of 0.3Hz(validation) 

 10        0.3  )  

 
Fig. 11  Comparison of absolute error of GRDPI and MGRDPI models 
at the frequency of 0.3Hz(validation) 

 11              
 0.3  )  

 
Fig. 12  Comparison of GRDPI and MGRDPI models outputs  with 
respect to the experimental data  at the frequency of 0.4Hz(validation) 

 12        0.4  )  

 
Fig. 13  Comparison of absolute error of GRDPI and MGRDPI models 
at the frequency of 0.4Hz (validation) 
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 2            
    

Table  2 Mean square error between models output and experimental 
data in the training and validation processes (mm) 
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