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 The present paper aims to evaluate a class of discontinuous Galerkin methods for modeling of coupled 
flow and mass transport equations in porous medium. Various combinations of primal discontinuous 
Galerkin methods were used for discretization of the coupled nonlinear system of flow and mass 
transport equations in a saturated porous medium and a fully implicit backward Euler scheme was 
applied for temporal discretization. The primal DGs have been developed successfully for density-
dependent flows by applying both Cauchy and Dirichlet boundary conditions to the mass transport 
equation. To avoid the errors arising from non-compatible selection of DG methods for flow and mass 
transport equations, only compatible combinations were applied.  To linearize the resulting nonlinear 
systems, Picard iterative technique was applied and a slope limiter was used to eliminate the 
nonphysical oscillations appeared in solution. For the purpose of consistent velocity approximation, 
Frolkovic-Knabner method was used. Three benchmark problems were simulated for validation and 
verification of the numerical code, which the results from the simulations show a good accuracy and 
low numerical dispersion for the model. Finally, to highlight the significance of consistent velocity 
approximation, a hydrostatic test problem was prepared. 
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Table 1 Input parameters for simulation of the standard and modified 
Henry problems 

      
K0  0.01 I* ms-1  

Dm  1.886×10-5  )1,2(  9.43×10-7 )3(  m2s-1  

L  0  m  
T  0  m  
S0  0  m-1  

  0.35  -  
0  1000  kgm-3  

s  1025  kgm-3  
C0  0  -  
Q  6.6×10-6 )1,3(3.3×10-6 )2(  m2s-1  

0  0.001  kgm-1s-1  

  0 - 
c 0.025 - 
*  

)1) (2)  (3 :( 

Fig. 1 Geometry and boundary conditions for Henry problem 
1   

 
Fig. 2 An unstructured mesh used for Henry problem with 2172 
elements and 1164 nodes 

2 2172 1164   
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Fig. 3 Numerical results in comparison with semi-analytical and 
SEAWAT solutions for standard Henry problem 

3 
  

  
Fig. 4 Numerical results in comparison with semi-analytical and 
SEAWAT solutions for the second case of Henry problem 

4 
  

  
Fig.  5 Numerical results in comparison with semi-analytical solution 
for the third case of Henry problem 

5   
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Fig. 6  Decreasing L2-norm error for h and C with refining the mesh 
(for standard Henry problem) 
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Fig. 7 Geometry and boundary conditions for the saline Elder problem  

7  

1 Rayleigh Number 

  
Fig. 8 Isochlors resulted from the present model (left) in comparison 
with those of  ROCKFLOW simulator (right) for the left half of Elder 
problem 

8 
  

2   
Table 2 Input parameters for simulation of Elder problem 

      
k  4.845×10-13 I m2  

Dm  3.565×10-6  
L 0  m  
T  0  m  
S0  0  m-1  

  0.1  -  
0  1000  kgm-3  

s  1200  kgm-3  
C0  0  -  

0  0.001  kgm-1s-1  

  0  -  
c  0.2 - 

) 16384  ( 

 .

 .
) 6 7   .(
DG 

 .
  

   
7 ]4[ .

 .  
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Fig. 9 Computed 0.2, 0.4, 0.6 and 0.8 isochlors and velocity arrows for the left half domain of Elder problem based on five different grid levels, four 
different simulation periods  and time step sizes of 7.5 days. 

9 0.20.40.6 0.8 7.5 
 

  
 .
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 .

 .
 .
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25.5  .

) 1-SS (
)   

  

3 -  
Table 3 Input parameters for simulation of Goswami-Clement 
experimental setup 

      
k  1.239×10-9 I m2  

Dm  1×10-9 m2s-1 

L 0.001  m  
T  0.0001  m  
S0  1×10-5  m-1  

  0.385  -  
0  1000  kgm-3  

s  1026  kgm-3  
C0  0  -  

0  0.001  kgm-1s-1  

c  0.026 - 

26.2 ) 2-SS( 
  .( ) 

26.55 
) 3-SS (

.( )    

 .10 
 .

 3  . 
0.5 

 .11024 

  . 
321584287336684 
3 4  .   

 

  
Fig. 10 Geometry and boundary conditions for Goswami-Clement 
experimental setup 

10 - 
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Fig. 11 Goswami-Clement experimental problem: numerical results in 
comparison with the experimental data and LDG-NIPG solutions for 
the steady state conditions. 

11 
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 11 12  
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1000 ) 

  

1 Hydrostatic test problem 

  
Fig. 12 Goswami-Clement experimental problem: numerical results in 
comparison with the experimental data and LDG-NIPG solutions for 
transient conditions. 
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4   
Table 4 Input parameters for simulation of hydrostatic problem 

      
K  1×10-4×I ms-1  

Dm  1×10-8 m2s-1 
L 0.4  m  
T  0.04  m  
S0  1×10-4  m-1  

  0.3  -  
0  1000  kgm-3  

s  1030  kgm-3  
0  0.001  kgm-1s-1  

c  0.03 - 

  
Fig. 13 Initial and boundary conditions for hydrostatic test problem 

13   

Fig. 14 Comparing mass fraction profile along X = 10 for simulations 
considering consistent velocity and no consistent velocity 
approximation against reference solution 

14 X=10  
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