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In the present study, AM60 magnesium alloy was cast and then subjected to hot extrusion process. 
Next, Multi Directional Forging (MDF) experiments with six pass numbers were conducted to 
investigate the influence of the operation on the microstructure and mechanical properties of these 
alloys. The shear punch test (SPT) and Vickers microhardness test were employed to evaluate the 
mechanical properties of the extruded and MDFed samples. Both the shear yield stress (SYS) and 
ultimate shear strength (USS) obtained from the shear punch test increased just after two passes but 
decreased with further pressing, although it was expected that the grains become finer with increasing 
the pass number. After two passes USS increased from 121.58 MPa to 142.42 MPa. This rise and fall 
indicates that texture softening overcame the strengthening effects of the grain refinement. The Vickers 
microhardness was measured across the cross sections of the extruded and MDFed samples, the results 
of this test also confirm this. The average microhardness of the extruded and MDFed samples were 
found to be respectively 73.50, 85.93, 82.26 and 77.83 HV for the  extruded and 2,4 and 6 passes of 
MDFed, which confirms SPT results. Optical micrographs showed that processing by MDF reduces the 
grain size from 11.22 to 1.91 µm after 6 passes. 
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Fig. 1 A schematic representation of MDF  
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Fig. 5 Prepared samples for the MDF process  
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4 Mechanical Test System 

Fig. 2 Casting geometry and dimensions in millimeters 
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Fig. 3 Casting alloy sample after turning 
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Fig. 6 A sample before and after of the MDF process  
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1 Shear Punch Test (SPT) 
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5 Optical Microscope 
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Fig. 8 A sample of Vickers indenter effect  
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Fig.  9 Shear stress plotted against the normalized punch displacement 
for the extruded and MDFed specimens 
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Table  2 Variations of shear yield stress and ultimate shear strength 
after extrusion and MDF process 
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Fig. 10 Shear stress plotted against the normalized punch displacement 
for the extruded and ECAPed specimens [14] 
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Fig. 11 Optical  micrographs  showing the  grain  sizes  for  the  as-extruded (a),  2  passes  of  MDF (b),  4  passes  of  MDF (c)  and  6  passes  of  MDF 
operation (d) of the AM60 alloy 
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Table  3 Grain size variation in micrometer after extrusion and MDF 
process 

 
 . 

  . 
  .

 ]18[ .1 
-  

 .

 ]19[ .
]20[ .

1 Critical grain size (dc) 

     
  

) 
11.22 4.25 2.63 1.91 

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

    

) MDF (AM60     

13951611  415  

- (3)

]22,21[. 
(3)  = exp( / ) 

  Q  R 
T Z 

  
  .          

   

   

3-3 -   

12   
  . 

 73.50 HV HV  83.93  .
 82.26 HV  77.83 HV 

  .
13 

 
 .

1-3  .
   ]23,16,14[ .14 

ECAP AM60 
  ]14[. 

 12 14  

 
  

   
 

 
Fig. 12 Dependence of the micro hardness of the MDFed samples on 
the number of passes 
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Fig. 13 The ultimate shear strength and micro-hardness variations in 
terms of the number of MDF passes 
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Fig. 14 Dependence of the microhardness of the ECAPed samples on 
the number of passes [14] 
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