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 In recent years, knee diseases have spread, especially in elderly people. Since performing daily 
activities such as walking and running the knee supports the weight of the body, it is more likely to be 
injured. This issue is more important for elderly people who have weak muscles and almost all elderly 
people suffer from knee pain. One way to help these people to move normally is to use a wearable 
device to aid the knee. In this article, a passive wearable robot is designed to improve the strength of the 
elderly who suffer from the knee pain. The robot uses the compliance elements to increase the power of 
the knee joint in parts of a cycle. This robot is developed based on a Stephenson II six-bar mechanism. 
Using this mechanism has the advantage of producing a motion similar to a knee. In other words, this 
mechanism produces the linear and rotational motions simultaneously. Additionally, more compliance 
elements can be added to improve the performance of the wearable robot. The optimal dimensions of 
the robot will be through the kinematics analysis; also, the performance of the robot will be considered 
based on the derivation of the dynamics equations and the numerical validations of these equations. The 
performance of the robot mounted on the leg is compared with the human. Obtained results show that 
less power is required when a wearable robot is used. This proves the merits of the designed robot to be 
used for the elderly. 
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Fig. 1: A. A schematic representation of rolling and sliding of the 
femoral condyles on fixed tibia. B. Motion of the tibia condyles during 
extension 

1 : A .  .B .
  [21]   

  

D
ow

nl
oa

de
d 

fr
om

 m
m

e.
m

od
ar

es
.a

c.
ir 

at
 1

3:
48

 IR
D

T
 o

n 
W

ed
ne

sd
ay

 M
ay

 9
th

 2
01

8

www.SID.ir

http://journals.modares.ac.ir/article-15-3920-fa.html
www.sid.ir


Arc
hive

 of
 S

ID

    

          

13951612  325  

 
 

  . 
 . "2" 

 .
"2.A"  

    
   

"2.B"   .
II   

   

-4   

  . 
  

  
   

4-1 -    
  .

"3"  . 
     

   
(1) = [ ]  

  i -  .

    

   
  .  

  
 . 

 
 . 

  .      
  

 
Fig. 2 two proposed structures based on Six-bar mechanism  
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Fig. 3 Wearable robot with design parameters, inputs angles, known 
parameters. Loop1 is depicted in dot line and loop2 is shown in dash 
line. 
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Fig. 4 the flowchart of optimization problem for determining 
appropriate dimension of the knee wearable robot 
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Fig. 5 the wearable  robot and geometric and mass parameters 
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Fig. 6 The Wearable robot equipped with a spring 
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Fig. 7 the Wearable robot equipped with two springs 
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Table 1 Body  mass and the length ranges of the leg 

    
56.7 kg  
31.4 cm  
40 cm  

1 Dynamic stereo X-ray (DSX) 

 

Fig. 8 The path of the ankle joint In sagittal plane 
8  

 

Fig. 9 The trajectory of the hip and knee joint during two cycles 
9  

2    
Table 2 The initial values of optimization parameters of wearable robot 

   
L1,0=40, L2,0=62.2, L3,0=49.68, 

L4,0=59.09 mm   

1,0=3.59, 2,0=4.58, 
3,0=4.69, 4,0=2.59 rad  

0=0.52, 0=0.88 rad   
0.01(m) < < 0.1(m) = 1, … ,4 

2° < , < 180   

3 
 .

J=0.23  .
"11" 

  . 
  .  

    

Swing Stance 
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   (   09  

Fig. 10 The wearable robot mounted on the leg by considering initial 
parameters, (a) optimal parameters, (b) 
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7-2 -   
   

 

             )a                                                   ()b(  
Fig. 11 Trajectories of the ankle of a human with wearble robot and 
when the robot is mounted on the leg. Terajectory along x-axis, (a), 
along y-axis, (b)  
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Y) b( 

3   
Table 3 The optimization parameters of the Wearable robot 

   
L1=35.7, L2=38.1, L3=45.1, L4=45.6 mm  

1 =4.02, 2 =4.8, 3=4.08, 4=3.6 rad    

=1.717, =0.691 rad   
  

  
Fig. 12 the workspace and path of the ankle 
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Fig. 13 Angular velocities of all joints of wearable robot during a cycle 
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Fig. 14 Angular accelerations of all joints of wearable robot during a 
cycle 
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Fig. 15 The error of the torque of the joint 1 of the wearable robot 
computed by using Lagrange and newton-Euler Methods cycle 
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Fig. 16 The torque of the joint 1 of the wearable robot computed by 
using Lagrange and newton-Euler Methods 
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Fig. 17 The torques of the joint 1 of wearable robot and the wearable 
robot equipped with one spring 
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Fig. 18 The torques of the joint 1 of wearable robot and the wearable 
robot equipped with two springs 
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Fig 19 consumption powers for the robot 
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Fig. 20 the modified structure of the wearable robot 
 20 

    = 

Fig. 21 the CAD model of the wearable robot in different views 
 21  
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