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In this study Large Eddy Simulation method has been employed in order to investigate the effects of 
blade rotation direction of the downstream turbine in two co-rotating and counter-rotating 
configurations. The acquired results are in good agreement with presenting experimental data in 
literatures. Counter-rotating configuration is used in order to investigate the effect of blade rotation on 
the efficiency of downstream wind turbine. The results show that the efficiency of downstream wind 
turbine has increased about 4 percent without any change in wind farm layout and type of wind turbines. 
The upstream wind turbine absorbed a portion of wind energy. Hence the streamwise velocity is 
decreased and lateral velocities are increased in downstream direction. The flow behind the upstream 
turbine is rotated in the same direction with downstream turbine in a counter-rotating configuration.  
This is why the efficiency of downstream turbine is increased in a counter-rotating configuration. The 
results of the present study show that streamwise velocity profile is almost identical in both 
configurations, while lateral velocities are changed considerably. In other words, the better efficiency of 
wind farm could be due to the lateral velocities. Hence, the efficiency of wind farm could be increased 
by decreasing the distance between two consecutive wind turbines in a counter-rotating configuration. 
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Fig 1 (a) Co-rotating configuration. (b) counter-rotating configuration 
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1 Reynolds Stress Models

  
Fig. 2 Eddy sizes at very high Reynolds number, with various 
lengthscales [15] 
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Fig 5 Wind tunnel placement of two in line turbines. 
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Fig 6 (a)computational mesh for a single wind turbine (b) typical mesh 
around the blade surface. 
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Fig 7  comparison (a) single turbine, (b) two in line turbines. TSR = 
6 for upstream wind turbine and TSR = 4 for downstream wind turbine  
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Fig. 8 Comparison of time averaged velocity profile along the 
horizontal lines centered at 1D (a) and 4D (b) in downstream of a two 
in line turbines  
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Fig  9 Power coefficient comparison in a clockwise and counter clock 
wise turbine 
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Fig 10 Power coefficient at different separation distances in counter-
rotating configuration 
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Fig. 11 Swirling strength in the instantaneous velocity field (a) co-rotating configuration (b) counter-rotating configuration (c) counter-rotating 
configuration by separation distance of 1D 
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Fig 12 Comparison of time averaged streamwise velocity profile (a) co-
rotating configuration (b) counter-rotating configuration (c) counter-
rotating configuration by separation distance of 1D 
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Fig 13 Comparison of time averaged cross stream velocity profile (a) 
co-rotating configuration (b) counter-rotating configuration (c) counter-
rotating configuration by separation distance of 1D 

13  ( )
  ( )   ( )

1D  
  

www.SID.ir

www.sid.ir


Arc
hive

 of
 S

ID

    

      

13951612  477  

  
)  

  
)  

  
)  

Fig. 14 Comparison of time averaged turbulence intensity profile (a) 
co-rotating configuration (b) counter-rotating configuration (c) counter-
rotating configuration by separation distance of 1D 
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