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In aircraft with multiple wings, control surfaces, and stabilizers, the stabilizing fins located at the tail 
provide stability for the boosting. In such aircraft the vortices resulting from the flow around upstream 
wings and control surfaces usually weaken the stabilizers’ performance. The nature of the form of grid 
fins makes them less sensitive in comparison with planar fins. Accordingly, the performance can be 
improved by substituting grid fins for planar fins. This paper simulates the flow field around the 
different models of planar and grid fins by applying finite volume methods using hybrid grid near the 
airplane’s body. At first, the flow field around a model with available experimental results was 
simulated to achieve the appropriate model of turbulence model. Then, two sets of planar stabilizers, i.e. 
PL1 and PL2 and one set of grid stabilizers were designed for an aircraft with wings and control 
surfaces in a way that aerodynamic coefficients of the fins are equal to each other. However, they 
demonstrate different aerodynamic coefficients when installed on the aircraft as stabilizers. The 
simulation was run at Mach numbers 0.6, 0.7, and 0.8 and attack angles 0, 2, 4, and 6 degrees. The 
results indicate that pitch moments and normal force coefficients of the planar fin are lower than the 
grid fin in both models. Moreover, the performance of the planar fin as a stabilizer will be improved if 
its chord’s length is decreased and its span is increased. 
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Table 1 The conditions of flight test 

  
    

  
(kg/m^3) 

  
Pa)(  

0.574  0.4778  1.2012  103450  

0.744  0.4763  1.2030  103650  

0.817  0.4765  1.2030  103600  

1 Abate 
2 Duckerschein 
3 Subsonic 
4 Aeroballistic Research Facility (ARF) 
5 Tangent-ogive 

25.4 
406.4  ."1   2" 

 .
 .

0.001  10 
 ."3"  

 .  .
"4" 

 .  

  
Fig. 1 The total model aircraft simulated with the grid fin in gambit 

1    

  
Fig. 2 The grid fin model 

2   

  
Fig. 3 The flow field around the model  

3   

 
Fig. 4 The prism grid near the nose 

4  
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Fig. 5 The normal force coefficient in Mach 0.574 

5 0.574  

1 K-epsilon-Realizable 
2 CFX 
3 Shear stress transport 
4 Symmetry 

2   CNa(rad-1)   
Table 2 The results of normal force coefficients slope, CNa(rad-1) 

  
   [18] CFX-SST Fluent 

K-W  
Fluent K-e-

ST  
Fluent K-e-

Re  

0.574  7.630  7.1562  7.2651  7.5425  7.6433  

0.744  7.620  7.10467  6.7784  7.7179  7.2479  

0.817  7.390  7.4198  6.7609  7.2946  6.9958  

3   
Table 3 The percentage error of normal force coefficients slope  

  
  

CFX-
SST 

Fluent 
K-W  

Fluent 
K-e-ST  

Fluent 
K-e-Re  

0.574  6.2%  4.7%  1.1%  0.1%  

0.744  6.7%  11%  1.1%  4.8%  

0.817  0.4%  8.5%  1.3%  5.3%  

 
"6" 

0.574 2  .

0.7169  .
 .    

 M=0.744 2  "7"  .

1.008   .
 .

0.814 
) 8.( 

4 -    

5 
 . 

 . 
6  .      

  
Fig.  6 The contour of Mach number at symmetry plan of grid fin for 

= 0.574, = 2  
6  = 0.574, = 2 

5 Booster 
6 Static stability 
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Fig.7 The contour of Mach number at symmetry plan of grid fin for 

= 0.744, = 2  
7  = 0.744, = 2  

  
Fig.8 The contour of Mach number at symmetry plan of grid fin for 

= 0.817, = 2  
8 = 0.817, = 2

1  .2 

 .
   

4-1 -    

 

 ."910 11"   

  
Fig. 9 The general model with  PL1 fin 

9 PL1 

  
Fig. 10 The general model with  PL2 fin 

10 PL2 

1 Static Margin 
2 Stabilizer 

  
Fig. 11 The general model with  Grid fin 

11 Grid 
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Fig. 12 The PL1 fin model 

12 PL1 
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Fig. 13 The PL2 fin model 

13 PL1 

  
Fig. 14 The Grid fin model 

14 Grid 
"1516 17"  .
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 . 
  

  
Fig. 15 The normal force coefficient in Mach 0.6 

15 0.6  

  
Fig. 16 The normal force coefficient in Mach 0.7 

16 0.7   

  
Fig. 17 The normal force coefficient in Mach 0.8 

17  0.8 

 

 .
 .

 "1819 20" 
  

  
Fig. 18 Mesh quality at the cross-section parallel to the axis 

18  

  
Fig. 19 Mesh quality inside cells of the wing 
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Fig. 20 Prism mesh near the wall  

20  
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Fig. 21 The variation of normal force coefficient planar fin model with 
mesh number  

21   

  
Fig. 22 The variation of axial force coefficient planar fin model with 
mesh number 

22  
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Fig. 23 The variation of normal force coefficient grid fin model with 
mesh number  

23   

  
Fig. 24 The variation of normal force coefficient grid fin model with 
mesh number  

24   
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Fig. 25 The normal force coefficient of aircraft in Mach 0.6 

25 0.6   

 
Fig. 26 The normal force coefficient of aircraft in Mach 0.7 

26 0.7   

1 Simple 

 
Fig. 27 The normal force coefficient of aircraft in Mach 0.8 

27 0.8    

 .
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 ." 29" 
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4   
Table 4 Normal force coefficients slope of general model 

  
  

CNa[rad-1] 
PL1 

CNa[rad-1] 
PL2 

CNa[rad-1] 
Grid  

0.6 24.73 27.7  29.14  
0.7  25.25  28.32  29.18  
0.8  26  25.17 29.95  
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Fig. 28 The normal force coefficient of fin up in Mach 0.7 

28 0.7   

 
Fig. 29 The normal force coefficient of fin down in Mach 0.7 

29 0.7   

0.60.7 0.8 5  .
5   -

 

  

 

" 303132"  .
 

   
  .  

5    
Table 5 The kinds of fins normal force coefficients slope in different 
Machs 

  
  

CNa[rad-1] 
PL1 

CNa[rad-1] 
PL2 

CNa[rad-1] 
Grid 

Fin Up Fin 
Down Fin Up Fin 

Down Fin Up Fin 
Down 

0.6 86.00 82.76 85.48 87.29 87.18 87.62 

0.7  87.15 84.65 86.69 88.06 87.79  88.18 

0.8  85.54 85.81 87.95 86.04 88.27 88.64 

 
Fig. 30 The pitching moment coefficient of aircraft in Mach 0.6 

30 0.6   

 
Fig. 31 The pitching moment coefficient of aircraft in Mach 0.7 

31 0.7   

Fig. 32 The pitching moment coefficient of aircraft in Mach 0.8 
32 0.8   

 -
6  .6 

PL1 PL2 
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6    
Table  6 The kinds of fins pitching moment coefficients slope in 
different Machs 

  
  

CMa[rad-1] 
PL1 

CMa[rad-1] 
PL2 

CMa[rad-1] 
Grid 

Fin Up Fin 
Down Fin Up Fin 

Down Fin Up Fin 
Down 

0.6 87.64 85.74 87.37 88.41 88.42 88.63 

0.7  88.32 86.86 88.06 88.85 88.74 88.96 

0.8  87.36 87.54 88.79 87.65 89.01 89.21 

 .

 . -
 .

) 34 ( 

 .

  ."33 34" 

  .
 . 

  . 

  .  

 
 .           

 

  

  
Fig. 33 the streamline behind the wings and control wings for grid fin 
model at M=0.7 and  =30 

33 
= 0.7, = 3  

 .7 

1 ) 4  .
PL1  
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PL2  
0.8  

Grid 7
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6 -  

 CFX 
 .
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7   
Table 7 The Static Margin in different Mach  

1 Trim angle 

  

  
Fig. 34 the streamline behind the wings and control wings for planar 
fin model at M=0.7 and  =30 

34 
= 0.7, = 3 

0.8 0.7 0.6 Mach\Fin alfa ST.Margin 
0.01 0.00 0.00 PL1 

=4 ( )  -0.52 0.59 0.57 PL2 
0.84 0.98 1.14 Grid 
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