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 In this research, ammonia-water regenerative Rankine cycle driven by solar energy with LNG as its heat 
sink in condenser is simulated from the energy, exergy and exergoeconomic viewpoints. A relatively 
new method is used for cycle to perform in pinch point condition which causes improvement in the 
thermodynamic performance and output power of the system. Also, heat exchangers are simulated by 
using heat transfer correlations of shell and tube heat exchanger in detail. The results of base condition 
show the suitable performance of natural gas cycle from the thermodynamic and exergoeconomic points 
of view and illustrate the importance of using the natural gas cycle. Solar collector and condenser of 
ammonia-water cycle, because of their high cost values, are introduced as the components that should 
be further considered from the exergoeconomic viewpoint. The parametric analysis results show that in 
high inlet pressure of ammonia-water turbine the exergy efficiency and the total cost rate of the system 
have more suitable values while the net output power of the system decreases. Also, by changing the 
ammonia mass fraction, change of output parameters has a complicated pattern. Finally, by increasing 
the pinch temperature difference in heat exchangers the decreased amount of the system’s 
thermodynamic performance is more than the amount of the system’s economical performance 
improvement. 
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Fig. 1 Schematic of combined power cycle 
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Fig. 2 Schematic of a parabolic trough collector 
2   

 
Fig. 3 Collector receiver model a) nomenclature, b) Thermal resistance 
network for the cross-section of the receiver 
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Table 2 geometric parameter of collector 
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Table 3 Pinch point position within evaporator 
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Table 4 Temperature difference of two streams at inlet or outlet of 
regenerator 

  
0.6  x  0.75 T3=T5- Tpp-15 
0.75 < x  0.8 T3=T5- Tpp-40 
0.8 < x  0.9 T6=T2+ Tpp+35 
0.9 < x  0.95 T6=T2+ Tpp+20 
0.95 < x < 1 T6=T2+ Tpp+5 
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Table 5 Cost balance and auxiliary equation for exergoeconomic 
analysis  
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Table 6 validation of solar collector simulation 
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50 71.95  73.85  
100 71.82  73.09  
150 71.23  71.83  
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Table 7 validation of combined cycle simulation 
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Table 8 Energy and exergy results for combined cycle 
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Fig. 4 Effect of ammonia-water turbine inlet pressure on total net 
output power of the combined cycle  
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Fig. 5 Effect of ammonia-water turbine inlet pressure on exergy 
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Fig. 6 Effect of ammonia-water turbine inlet pressure on total cost rate 
of the system 

6 - 

 
Fig. 7 Effect of pinch temperature difference on output parameters 
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