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 The current paper deals with the cyclic softening/hardening and strain ratcheting behavior of circular 
steel tubes under repeated inelastic pure bending. A relatively simple mathematical solution is proposed 
to tackle the problem. Key physical features involved are the elastic after-effect, accumulated cyclic 
(creep type) ovalisation of the cross-section, cyclic plasticity including the Bauschinger effect, cyclic 
softening/hardening of the material and ratcheting effect. The moment-curvature formulation of the tube 
is derived in an ovalised configuration. Tvergaard stress-strain relation is used to describe the elasto-
plastic stress–strain relationship of the material. This continuous nonlinear constitutive model 
considerably abridges the solution. A combined nonlinear kinematic/nonlinear isotropic hardening rule 
is used to describe the cyclic uniaxial stress-strain. The analysis of the low cycle pure inelastic bending 
of the tube is performed under a curvature-control regime. The cycle by cycle growth (creep type) in the 
ovalization of the cross-section is modeled using a modified version of the Bailey–Norton creep law. 
The model predictions are examined against a number of available test data on the inelastic monotonic 
and cyclic bending of tubes and reasonable agreements are observed. 
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Steel circular tubular 
Monotonic and cyclic inelastic pure bending 
Cyclic softening/ hardening behavior  
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Fig. 1 Schematic strain profiles in a tubular section subject to inelastic 
monotonic pure bending 
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Fig. 2 Schematic stress profiles in a tubular section subject to inelastic 
monotonic pure bending 
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Fig. 3 The ovalised cross section of the tube. 
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Table 1 Geometric and material parameters in the previous experiments 
used for validation of the current monotonic analytical solution. 

 Do   
(mm) 

t 
(mm) Do/t 

E  
(GPa) 

y 
(MPa) n  

 
304 

31.69 1.232 25.7 201 280 12.9 [22] 

 
X52 

26.42 1.016 26 205 246 9.05 [23] 

 
1018 

31.78 0.889 35.7 207 512 21 [24] 

 
1020 

31.84 1.293 24.6 205 277.2  [25] 

  
Fig. 4 Comparison of the ovalization-curvature curves from the 
experiments conducted by [22] with Eq. (25) 
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Fig. 5 Comparisons between the moment-curvature responses in 
experiments conducted by [22] and the analytical solution in the current 
study. 
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Fig. 6 Comparisons between the moment-curvature responses in 
experiments conducted by [23] and the analytical solution in the current 
study. 
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Fig. 7 Comparison of the ovalization-curvature curves from the 
experiments conducted by [23] with Eq. (25) 
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Fig. 8 Comparisons between the moment-curvature responses in 
experiments conducted by [24] and the analytical solution in the current 
study. 
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Fig. 9 Comparison of the ovalization-curvature curves from the 
experiments conducted by [24] with Eq. (25) 
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Fig. 10 Comparisons between the moment-curvature responses in 
experiments conducted by [25] and the analytical solution in the current 
study. 
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Fig. 11 Comparison of the ovalization-curvature curves from the 
experiments conducted by [25] with Eq. (25) 
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Fig. 12 Definition for the stress and strain path in the first and zeroth 
half-cycle 
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Table 2 Mechanical properties of the carbon steel 1018 based on 
Tvergaad relation in tests conducted by [24] 

  

 E 
(Gpa)  

 pr 
(MPa) n 

-
  

207  320 6.64 

  
207  960 17.7 

1018 0.02 ± 
13   

n1=0.95m1=2C1=0.018 
C2=0.006 14 
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Fig. 13 Comparisons between the predictions from the cyclic material 
model in the current study with the cyclic coupon test data from [24] 
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Fig. 14 Comparisons between the “ovalization-curvature” loops from 
Eq. (38) with the corresponding experimental data from [24] 
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Fig. 15 A Q–Q plot of the ovalization at =0 in any half-cycle between 
the predictions of Eq. (38) with the corresponding experimental data 
from [24] 
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Fig. 16 A Q–Q plot of the ovalization at maximum and minimum 
curvatures in any half-cycle between the predictions of Eq. (38) with 
the corresponding experimental data from [24] 
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Fig. 17 Simulation of the inelastic cyclic “moment-curvature” path for 
a steel tube in Ref. [24]experiments provided by Eq. (35) 

17  -
]24[ ) 35(  

 

Fig. 18 Maximum and minimum moments in different half-cycles: 
Predictions from Eq. (35) and the corresponding experimental data 
from [24] 
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