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Extended Abstract 

 

Reference evapotranspiration (ETo) is a major research area of both hydrology and water 

resources management. The most important and direct application of ETo is in the field of 

irrigation. One of the conventional methods for estimating reference evapotranspiration using 

meteorological data is the Penman-Monteith-FAO equation. This equation due to satisfactory 

results has been used in a variety of climates around the world. However, the lack of 

necessary meteorological data makes it difficult to estimate spatially distributed ETo using the 

FAO-PM method in the wider ungauged areas. Penman Monteith method requires the data of 

air temperature, wind speed, relative humidity, solar radiation and etc. To overcome the 

existing limits of the FAO-PM model, various attempts aiming to estimate ETo with limited 

observed data have been conducted. Remote sensing methods are already the only way to 

obtain the various variables at the temporal and spatial scales that needed to estimate 

evapotranspiration. In recent years, several algorithms have been proposed to estimate 

reference evapotranspiration using remote sensing data. Some of these models, which are 

based on the relationship of energy balance, are called surface energy balance methods. In 

addition to remote sensing, data analysis techniques based on machine learning (ML) are 

more frequently used in agricultural studies in recent years, especially in evapotranspiration. 

Therefore, analyses performed with ML algorithms, when coupled with remote sensing data, 

have the potential to predict the biophysical variables, mainly due to the adaptive capacity of 

the models to find patterns in nonlinear behavior variable, such as ETo. Machine learning 

methods are well known and have been widely used in other engineering sciences. The 

purpose of this study is to estimate the reference evapotranspiration using machine learning 

algorithms and remote sensing data, and finally to analyze the algorithms used. In general, the 

final results of evapotranspiration estimation depend on factors such as the type of data and 

the method for estimating evapotranspiration. 

In this study, the standard method of estimating ETo with meteorological data, Penman-

Monteith FAO equation was used. The NDVI vegetation index indicates the amount of 

vegetation on the ground and is sensitive to the early stages of phenology. But the enhanced 

vegetation index (EVI) minimizes atmospheric effects and differences in blue and red 

reflections. The SAVI index is used to calculate the vegetation of the land surface that has 

moderated the effect of soil on it. Three machine learning algorithms were introduced to train 

the ET0 models, including random forest (RF), gradient boosting regressor (GBR) and 

support vector regression (SVR). Random forest is one of the machine learning methods that 

performs classification and regression using Bootstrap and Bagging methods. In this research, 
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three machine learning algorithms with different input data (vegetation indices and all bands 

of Landsat 7 and 8) were used and after comparing the results, the best model was selected. 

Performance Evaluation Indicators considered to compare and evaluate the performance of 

the studied models were the parameters of mean square error (RMSE), mean absolute error 

(MAE), coefficient of determination (R2) and correlation coefficient (CC). Finally, according 

to the results of the two approaches used in this study, using the values of all Landsat bands, 

the reference evapotranspiration can be estimated with more accuracy. 

Accurate estimating of reference evapotranspiration is necessary to estimate irrigation needs 

and in general, to accurately manage water resources. Conventional methods of measuring 

evapotranspiration are reference using meteorological data. These measurements are point-

based, so they are only suitable for very small scale areas. At present, remote sensing methods 

are the only non-terrestrial way to obtain the various variables at the temporal and spatial 

scales needed to estimate reference evapotranspiration. In order to reduce the dependence on 

climatic data and better resolution, machine learning methods are used to calculate the 

reference evapotranspiration. In this research, RF, GBR and SVR models were used. In the 

present study, two approaches were used. In the first approach, the values of all bands of 

Landsat images were as model input; while in the second approach, vegetation indices were 

calculated with only a few bands of Landsat images and then used as model inputs. By 

examining, it could be seen that the information obtained from the Landsat image bands is 

related to the phenological behavior of the products, and it is also possible to contract very 

relevant information related to agricultural products that are examined temporarily and 

spatially. One of the factors influencing the accuracy of estimating reference 

evapotranspiration is the use of other Landsat bands in addition to the bands related to 

vegetation indices. 
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