زوهش فيريك © () (S)

مجلهٔ پژوهش فیزیک ایران، جلد ۲۲، شمارهٔ ۲، تابستان ۱۴۰۱ DOI: 10.47176/ijpr.22.2.01341

بررسی برهم کنش داروی ضد سرطان ۵- فلوئوراسیل متصل شده به نانو خوشهٔ بور فسفید (B12P12) خالص و جایگزین شده با تیتانیوم با نوکلئو باز آدنین: به روش نظریهٔ تابعی چگالی

مهدی رضایی صامتی* و عاطفه رضایی

گروه شیمی کاربردی، دانشکده علوم پایه، دانشگاه ملایر، ملایر

پست الكترونيكي: mrsameti@malayeru.ac.ir

(دریافت مقاله: ۸/۸/ ۱۴۰۰ ؛ دریافت نسخهٔ نهایی: ۱۴۰۰//۳۱)

چکیدہ

هدف از پژوهش حاضر بررسی جذب داروی ۵-فلونوراسیل متصل شده به نانو خوشهٔ (B12P1) خالص و جایگزین شده با تیتانیوم بر روی نوکلنو باز آدنین با استفاده از نظریهٔ تابعی چگالی (DFT) است. در این کار ابتدا مدلهای مختلفی برای جذب دارو بر روی نانو خوشه و آدنین در نظر گرفته شدند و سپس ساختار تمام مدلها مورد نظر با استفاده از روش WB97XD /Lanl2DZ توسط نرم افزار گوسین (۹۰) بهینهسازی شدند. با استفاده از ساختارهای بهینه شده، پارامترهای ساختار فضایی مانند طول و زاویهٔ پیوند، پارامترهای ترمودینامیکی، پارامترهای نظریهٔ اتم در مولکول (AIM)، گرادیان کاهش چگالی (RDG)، طیف مرئی-فرابنفش (Uv-visible) اوربیتالهای هومو و لومو و نموداره ای چگالی حالتها (OS) محاسبه و نتایج آنها مورد تجزیه تحلیل قرار گرفتهاند. نتایج محاسبات نشان دادند که با جایگزینی اتم تیتانیوم در ساختار نانو خوشهٔ داول و این (یاری محاسبه و نایز می تعاوی در ساختار نانو خوشهٔ (یاری (DOS)) محاسبه و نتایج آنها مورد تجزیه تحلیل قرار گرفتهاند. نتایج محاسبات نشان دادند که با جایگزینی اتم تیتانیوم در ساختار نانو خوشهٔ داول یا اسخت نانو محاسبه و نتایج آنها مورد تجزیه تحلیل قرار گرفتهاند. نتایج محاسبات نشان دادند که با جایگزینی اتم تیتانیوم در ساختار نانو خوشهٔ داول یا نرژی و سختی شیمهایی کاهش قابل توجهی می یابند و این عامل سبب افزایش رسانایی سامانه می شود. از این خاصیت میتوان برای ساخت نانو و پایداری آنها از نظر ترمودینامیکی است. نتایج محالا تأیید کردند که جذب داروی ۵-فلونوراسیل متصل به سطح نانو خوشه با آدنین از و پایداری آنها از نظر ترمودینامیکی است. نتایج محالا تأیید کردند که جذب داروی ۵-فلونوراسیل متصل به سطح نانو خوشه با آدنین از نوع غیر کووالانسی است. بررسی نتایج حاصل از این مطالعه ثابت کرد که جذب داروی ۵-فلونوراسیل متصل به سطح نانو خوشه با آدنین از توع غیر کووالانسی است. بو مین با تم معان به با می داروی ۵-فلونوراسیل منه می دون فریند جذب نوع نیر کروالانسی است. بررسی نتایج حاصل از این مطالعه ثابت کرد که بانو خوشهٔ بور فسید خالص و جایگزین شده با اتم تیتانیوم، میتواند

واژههای کلیدی: ۵-فلوئوراسیل، نانو خوشهٔ بورفسفید، آدنین، نظریهٔ تابعی چگالی، تیتانیوم، پارامترهای کوانتومی

۸. مقدمه
 ۸. مقدمه

جلد ۲۲، شمارهٔ ۲

سرطان کولورکتال است که مانند سایر داروهای شیمی درمانی ضمن جذب بر روی مولکول های نوکلئوتید، باعث تغییر ساختارهای RNA یا DNA سلولهای مورد نظر می شود [۱۶ و ۱۷]. رسانش هدفمند این دارو به سلولهای هدف در بدن باعث جلوگیری از اثر آن بر سلول های سالم شده و اثر درمانی دارو را بیشتر میکند [۱۸]. در بررسی های اخیر نشان داده شده است که جایگزین کردن عناصر متنوع در نانو خوشه ها باعث افزایش رسانایی و خاصیت حسگری این ترکیبات می شود [۱۹ – ۲۱]. با این هدف در این کار در نظر داریم که برای اولین بار برهم کنش و جذب داروی ضد سرطان ۵-فلوئوراسيل با نانو خوشهٔ بور فسفيد B₁₂P₁₂ در حالت خالص و جایگزین شده با اتم تیتانیوم بر روی نوکلئو باز آدنین را، مورد بررسی قرار دهیم و اثر نانو خوشهٔ بور فسفید در برهم کنش دارو با نوکلئوباز آدنین را بررسی کنیم و میزان کارایی آن را مورد سنجش قرار دهیم. علت استفاده از فلز واسطهٔ تیتانیوم در این بررسی آن است که تیتانیوم در دزهای بالا سمی نیست و در بدن هیچ گونه اختلالی ایجاد نمی کند. از اینرو امکان استفاده آن در محیط های زیستی وجود دارد. برای سادگی کار، نانو خوشهٔ بور فسفید خالص و جایگزین شده با اتم تیتانیوم با نمادهای A و B و موقعیتهای جذبی داروی ۵–فلوئوراسیل بر روی نانو خوشهٔ بورفسفید با نماد-های b، a و c معرفی شده اند (شکل ۱. الف). همچنین اتصال مجموعه نانو و دارو به آدنین از سمت NH₂ مولکول آدنین را با عدد ۱ و اتصال به آدنین از سر N و NH بین دو حلقهٔ اتفاق با عدد ۲ نمایش داده شده است (شکل ۱. ب). همان طور که میدانیم آدنین یکی از پنج نوکلئوباز موجود در ساختار DNA انسان است و برهم کنش داروی متصل شده به نانو خوشه به آدنین می تواند اطلاعات ارزشمندی را در خصوص عملکرد دارو ارائه دهد. با این هدف پس از بهینه سازی ساختارهای اولیهٔ مورد نظر، پارامترهای انرژی جذب، پارامترهای کوانتومی، بار طبیعی اربیتال NBO'، نمودارهای RDG، طيف هاى مرئى - فرابنفش (Uv)، پارامتر هاى

آنها انجام شدهاند [۱]. مطالعات نظری بر روی نانو خوشههای (XY)n نشان دادند که قفس، های شبه فولرنی X12Y12 یایدارترین ساختار آنها است [۲ و ۳]. از ایس میان، ترکیبات ساخته شده از نیتریدها و فسفیدهای گروه سوم جدول تناوبی مانند بور نیترید(BN)، بور فسفید(BP)، آلومینیوم نیترید(AIN) و غیره به دلیل داشتن ویژگیهای متنوع مغناطیسے و اپتیکے، همچون شکاف انرژی بـزرگ و پایـداری شـیمیایی بـالا در محيط، بسيار حائز اهميت هستند. نانو خوشه هاي بور فسفيد که از خانوادهٔ قفس های شبه فولرنی هستند، ساختارهای متنوعی دارند که پایدارترین آنها به صورت B₁₂P₁₂ است [۴]. نانو خوشهٔ B₁₂P₁₂ یک ترکیب نیمه هادی با ساختار مقاوم، شکاف انرژی بزرگ و اتصالات کووالانسی قوی است که بسيار مورد توجه محققان قرار گرفته است. اين تركيب به دليل خواص ویژه به عنوان جاذب ترکیبات دارویی و گازهای آلاینده، همچنین به عنوان کاتالیسیت در محیطهایی با شرایط سخت مورد استفاده قرار گرفته است. از اینرو می توان از آن در طراحیهای صنعتی، پزشکی و غیره نیز استفاده کـرد [۵ – ۷]. در طی سال های اخیر به منظور بهبود خواص الکترونی، ساختاری و افزایش کارایی این ترکیبات از جایگزینی اتمهای فلزی مختلف استفاده شده است [۸ و ۹]. بررسی های اخیر نشان دادند که جایگزین کردن اتمهای فلزی در نانو خوشه-های بور فسفید، باعیث تغییر قطبش اسپین، خواص الکترونیکے و مغناطیسے آن مے شوند [۱۰ و ۱۱]. نےانو خوشهٔ بورفسفید می تواند به عنوان حامل گاز هیدروژن در صنعت نيز استفاده شود. نكتهٔ جالب توجه آن است كه ضمن جذب و حمل گاز هیدروژن، شکاف نوار انـرژی نـانو خوشـه به میزان قابل توجهی کاهش می یابد. از این رو می توان از این نانو خوشه به عنوان حسگر شیمیایی نیز استفاده کرد [۱۲ و ۱۳]. امروزه در علم پزشکی به منظور رسانش هدفمند دارو به سلول های سرطانی و پیشگیری از آسیب به سلول های سالم از تركيبات حامل بي اثر از جمله نانو لولهها و نانو خوشهها و نانو صفحه ها استفاده می شود [۱۴ و ۱۵]. داروی ۵-فلوئوراسیل معروفترین داروی شیمی درمانی در درمان

۱. Natural bond orbital

بررسی برهمکنش داروی ضد سرطان ...

- **شکل ۱**. جایگاههای جذبی (الف) مولکول ۵-فلوئوراسیل (موقعیت b،a و c) و (ب) آدنین (موقعیت ۱و۲).
- $\mu = (E_{HOMO} + E_{LUMO}) / r, \qquad (\Upsilon)$

 $\eta = (E_{LUMO} - E_{LUMO}) / \Upsilon, \tag{(Y)}$

 $\Delta N = -\mu / \eta, \qquad (\mathfrak{k})$

 $E_{ads} = E_{\diamond}FU-nanocage \ adenine \ -(\ E_{\diamond}FU-nanocage \ + E \ adenine \),$ (\diamond)

در این معادله Es-FU-nanocage/adenine انرژی کل برهمکنش مجموعهٔ نانو خوشهٔ بور فسفید و مولکول فلوئوراسیل با نوکلئو باز آدنین است، Es-FU-nanocage انرژی کل مجموعهٔ نانو خوشه و مولکول فلوئوراسیل و Eadenine انرژی کل مولکول آدنین است. برای بررسی انجام پذیر بودن یا نبودن فرایند جذب، پارامترهای ترمودینامیکی از جمله تغییرات آنتالپی، آنتروپی و انرژی آزاد گیبس با استفاده از معادلهٔ (۶) محاسبه شدهاند.

$$\Delta M = M \circ FU$$
-nanocage adenine –
($M \circ FU$ -nanocage + M adenine) ((\mathcal{F})
 $M = S, H, G,$
 $\Delta S \Delta H, \Delta G,$ $Z_{AG}, = \Delta G,$
human line in M is a set of the set of the

۳. نتایج و بحث
۳. ۱. بررسی ساختاری و انرژی جذب
ساختارهای بهینه شده مدلهای جذبی A-a-1 تا 2-2-8 در
شکل ۲ ارائه شدهاند. بررسی نتایج ساختارهای بهینه شده نشان

ترمودینامیکی و پارامترهای نظریهٔ اتمها در مولکولها (AIM')، با استفاده از روش WB97XDو با استفاده از سری پایهٔ Lanl2DZ بر پایهٔ نظریهٔ تابعی چگالی، محاسبه شده و نتایج حاصل مورد بررسی و تجزیه و تحلیل قرار گرفتهاند.

۲. روش محاسباتی

تمام محاسبات ساختاری و کوانتومی نانو خوشهٔ بور فسفید در حضور مولکول ۵-فلوئوراسیل و نوکلئوباز آدنین با استفاده از نظریهٔ تابعی چگالی (DFT) با روش WB97XD و با استفاده از سری پایهٔ Lanl2DZ و با به کارگیری نـرم افـزار گوسین (۹۰) انجام شدهاند [۲۲]. برای این منظور، ابتدا حالتهای مختلفی از نحوهٔ جذب دارو برروی نانو خوشهٔ بور فسفید و مولکول آدنین در نظر گرفته شده و پس از بهینه سازی ساختارهای اولیه، ۱۲ مدل با ساختار پایدار بـرای محاسبات سایر خـواص انتخاب شدند. با استفاده از نظریه کوپمن^۲ و ساختارهای بهینه شـده و انرژیهای هومو ولومو و پارامترهای μ (پتانسیل شیمیایی)، η (گاف انرژی) بر اساس روابط (۱) تا (۴) محاسـبه شـدهانـد. (سختی کروی)، ΔN (بیشینه عـدد انتقال بـار الکتـرون)، در انرژی بالاترین اوربیتال مولکولی در اینجا منظـور ازهامی انرژی پایینترین اوربیتال مولکولی اشغال شده و مراح

 $E_{gap} = E_{LUMO} - E_{HOMO}$,

Archive of SID.ir

(1)

Y. Atom in molecule

۳. Koopmans's theorem

شکل ۲. ساختاریهای بهینه شده مدلهای جذبی ۵ فلوراسیل متصل شده به نانوخوشه با آدنین، در این شکل رنگهای آبی، صورتی، طوسی، قرمز ، نارنجی و سبز نشان دهندهٔ اتمهای Fi،H،C،B ،P و F (مدلهای A-a-1 تا B-c-2).

ترین و بلندترین طول پیوند را دارند. علت این پدیده را می توان به اثرات فضایی جذب داروی متصل شده به نانو خوشه بر روی آدنین و همچنین حضور فلز واسطه نسبت داد. هرچقدر طول پیوند بلندتر باشد، پیوند مورد نظر ضعیفتر است و استحکام کمتری دارد. نکتهٔ جالب توجه آن است که با جایگزین کردن تیتانیوم بازآرایی دارو و آدنین در فضا باعث می شود، آدنین به نانو خوشه نزدیکتر شده و از دارو فاصلهٔ بیشتری بگیرد که این عامل در ساختارهای بهینه شدهٔ انرژی جذب، مشاهده است. با استفاده از ساختارهای بهینه شدهٔ انرژی جذب، کلیهٔ مدلهای مورد مطالعه با استفاده از رابطهٔ (۵) محاسبه شده و نتایج در جدول ۱ گرداوری شدهاند.

نتایج انرژی جذب جدول ۱ نشان میدهند در تمام

میدهد که طول پیوند بین N–C، F، O و O–C در ۵ فلوراسیل به ترتیب ۱/۳۹، ۱/۳۵ و ۲/۱۲ آنگستروم است که با نتایج سایر گزارش های ارائه شده همخوانی خوبی دارد [۱۷ – ۱۵]. همچنین میانگین طول پیوند P–B در نانوخوشهٔ بورفسفید خالص و جایگزین شده با تیتانیوم به ترتیب ۲/۱۹ و ۲/۷۳ آنگستروم است که با نتایج گزارش های سایر محققین همخوانی خوبی دارند [۲۶ – ۲۹]. میانگین طول پیوند بین نانو خوشهٔ بور فسفید و دارو در مدل های 2-b-A و 2-c-A به ترتیب ۱/۵۳ و ۱۹۶۸ آنگستروم بوده و در واقع کوتاهترین و بلندترین فاصلهٔ جذبی حالت در موقعیت ۲ را دارند. در موقعیت جذبی ۱ میانگین طول پیوند بین دارو و آدنین در مدل های 1-c-A و -B دا-c به ترتیب کوتاه-

بررسی برهمکنش داروی ضد سرطان ...

689

Archive of SID.ir

جدول ۱. پارامترهای انرژی جذب و گشتاور دوقطبی مدلهای جذبی ۵ فلوراسیل متصل شده به نانو خوشه با آدنین، (مدلهای I-a-A تا -c-B2).

	A-a-1	A-a-2	A-b-1	A-b-2	A-c-1	A-c-2
Eads(Kcal/mol)	$-\Delta/VY$	-19/3	-79/91	-۳۳/۵۵	$- \vartheta \circ / \Lambda \vartheta$	-41/19
μ(Debye)	13/14	٨/٩١	$\Delta/\Lambda \circ$	Δ/VV	۱ ۰ / ۲ ۰	٩/ • ٢
	B-a-1	B-a-2	B-b-1	B-b-2	B-c-1	B-c-2
Eads(Kcal/mol)	-34/11	-74/7 •	-79/00	-W/94	-42/14	$ \psi \circ / \circ 1$
µ(Debye)	18/11	٨/١٩	۱۸/۳۵	۱۷/۰۹	۲۰/۴۸	۲۰/۴۱

۳. ۲. پارامترهای کوانتومی

نتایج مربوط به ساختارهای الکترونی اوربیتال های هومو و لومو' در شکل ۳ ارائه شده اند. همان طور که میدانیم موقعیتی که تمرکز اوربیتالهای هومو بیشتر باشد آن ناحیه برای حملهٔ گونه های الکترون دوست مناسب تر و بر عکس؛ موقعیتی که تمرکز اربیتال های لومو بیشتر باشد برای حملهٔ گونههای هسته دوست مساعدتر است. بررسی و تحلیل نتایج مربوط به تراکم اربیتالهای هومو و لومو شکل ۳ نشان میدهد که اوربیتال های لومو در همه مدل ها به جز A-c-1, A-c-2 و B-a-2 بر روی مولکول دارو متمرکـز هسـتند. ایـن در حـالی است که در مدل های A-c-1 و A-c-2 تجمع اوربیتال های لومو بر روی نانو خوشه بیشتر هستند. در مدل B-a-2 در دو حالت آلفا و بتا، این تراکم بر روی مولکول آدنین کشیده شده است. این موضوع بیانگر آن است که این نقاط برای حملهٔ تركيبات هسته دوست مناسبتر هستند. تجمع چگالی اوربیتال های مولکولی هومو به جز در مدل A-a-1 بر روی نانو خوشهٔ بور فسفید و بیشتر بر روی محل جذب نانو خوشه و دارو متمرکز هستند. در مدلهای B این اوربیتالها به سمت اتم تیتانیوم جایگزین شده، در ساختار نانو خوشه گسترش یافتهاند. از اینرو این موقعیتها محلهای مناسبی برای حملهٔ گونه های الکترون دوست هستند. بنابراین در مدل B-a-1 تمركز ابر الكتروني هومو بر روى مولكول آدنين بوده و اين مولكول محل مناسبي براي حملة گونه الكترون

مدلهای مورد مطالعه، مقادیر انرژی جذب در محدودهٔ ۵/۷۲-تا ۶۰/۸۶- کیلو کالری بر مول بوده که نشان دهندهٔ ماهیت فسفید حامل دارو بر روی مولکول آدنین است. مدل جـذبی -A c-1 با انرژی جذب ۶۰/۸۶- کیلوکالری بر مول در بین سایر مدلها بیشترین انرژی جذب را داشته و با داشتن کوتاهترین طول پیوند، مساعدترین مدل برای اتصال دارو به آدنین است. هر چقدر انرژی جذب بیشتر باشد، موقعیت های جذبی پایدارتر بوده و ساختارهای جذبی مساعدتر هستند [۳۳-۳۰]. لذا مدل جذبی A-c-1 از سایر مدل ها پایدارتر است. از طرف دیگر، مدل A-a-1 با کمترین میزان انرژی جـذب یعنـی ۵/۷۲-کیلو کالری بر مول ناپایدارترین حالت جذبی است و ضعیف-ترین پیوند تا ۲۰/۴۸ دبای است. بررسی این نتایج نشان میدهد که با تغییر موقعیت اتصال دارو بر روی نانو خوشه و جذب این مجموعه بر روی مولکول آدنین، میزان گشـتاور دوقطبـی تغییـر قابل توجهی پیدا می کند. در بین مدلهای مورد مطالعه، مدل B-c-1 کـه در آن اتـم تیتـانیوم (گشـتاور دو قطبـی تیتـانیوم در حالت خالص صفر است) جمایگزین شده، بیشرین گشتاور دوقطبی را دارد که این امر در فرایند از حالت خالص نانو خوشهٔ بورفسفید، فرایند جذب قویتری را به همراه دارد. مقایسهٔ مقادیر گشتاور دوقطبی نشان میدهـد کـه در مـدلهـای جذبي با حالت جايگزين شده با تيتانيوم، مقدار گشتاور دوقطبي در محدوده ۸/۱۹ دبای بوده و انرژی جـذب از حالـت خـالص بیشتر است، که این عامل می تواند در نتایج درمانی دارو موثر باشد. بررسی نتایج نشان درمانی دارو نقش مهمی دارد.

^{°.} Highest Occupied Molecular Orbital(HOMO) – Lowest Unoccupied Molecular Orbital(LUMO)

شکل ۳. ساختار اوربیتالهای هومو و لومو برای مدلهای جذبی ۵ فلوراسیل متصل شده به نانوخوشه با آدنین، (مدلهای A-a-1 تا B-c-2).

بررسی نتایج جدول ۲ حاکی از آن است که در مدلهای جذبی B که در آن اتم تیتانیوم به جای یک اتم بور جایگزین شده، نسبت به مدلهای خالص با تغییرات انرژی هومو و لوموی بیشتری روبرو هستند که نتایج این تغییرات در میزان گاف انرژی و سختی به وضوح قابل مشاهده است. بنابراین در مدلهای B، کاهش گاف انرژی و سختی کروی قابل توجه دوست است. همان طور که مشاهده می شود در دو مدل -B-c 1 و 2-B-c، نانو خوشه موقعیت مناسبی برای حملهٔ هر دو گونه الکترون دوست و هسته دوست هستند. برای بررسی دقیق تر با استفاده از سطح انرژی اوربیتالهای هومو و لومو پارامترهای کوانتومی مربوطه، بر اساس روابط (۱) تا (۴) محاسبه شده و نتایج حاصل در جدول ۲ جمع آوری شدهاند.

جدول ۲. پارامترهای کوانتومی مدلهای جذبی ۵ فلوراسیل متصل شده به نانوخوشه با آدنین، (مدلهای A-a-1 تا B-c-2)

Model	$E_{(HOMO)}$	E _(HOMO) E _(LUMO)		μ	η	ΔE_{g}	۸N
	eV	eV	eV	eV	eV	%	ΔIN

۲	شمارة	،۲۲	حلد
			•

مهدی رضایی صامتی و عاطفه رضایی

A-a-1	-V/9۶	-1/9٣	۶/۰۳	-4/90	۳/۰۱	17/01	-0/14
A-a-2	$-\Lambda/1V$	-1/7 •	۶/۹۷	-۴/۶۸	٣/۴٨	-1/°A	-0/14
A-b-1	$-\Lambda / \circ \circ$	-•1/80	۶/۳۵	-4/11	٣/١٧	$- {\tt W}/{\tt V}{\tt A}$	-•/1V
A-b-2	$-V/\Delta\Lambda$	$-\circ/\Lambda\Lambda$	۶/V۰	-4/12	۳/۳۵	-٩/۵۴	-•/1V
A-c-1	$-\Lambda/\circ 1$	-1/09	۶/۹۵	-4/22	۳/۴۷	۴/۸۰	-•/1V
A-c-2	$-V/\Lambda \hat{r}$	-1/01	$\hat{\gamma}/\Lambda\Delta$	-4/44	٣/۴٣	۶/۱۰	-•/1V
B-a-1(α)	$-V/\Delta V$	-1/09	۵/۹۷	-4/01	۲/۹۹	$\Lambda/\Lambda\Lambda$	-•/10
B-a-1(β)	$-V/\Delta F$	$-1/\Delta A$	۵/۹۶	-4/08	۲/٩٨	۱۲/۳۸	-0/14
B-a-2(α)	-٨/١٩	-1/VT	۶/۴V	-4/98	٣/٢٣	۱/۳۶	-•/\ D
B-a-2(β)	$-\Lambda/\Upsilon$ ۴	-1/48	$\hat{\mathbf{F}}/V\mathbf{A}$	-۴/۸۵	٣/٣٩	۰/۳۲	-0/14
B-b-1(α)	-V/۶۴	-1/9٣	$\Delta/V1$	-۴/۷۹	۲/۸۶	$-\Upsilon/\Delta\Lambda$	- • / \ ٩
B-b-1(β)	-V/9٣	$-1/\Delta\Delta$	۶/°V	-۴/۸۹	۳/ ۰ ۴	-%//	- • / \ ٩
B-b-2(α)	$-V/\Delta r$	-1/49	۶/۰۳	-۴/۵۱	۳/۰۱	-٩/٣۵	-•/ \ ٩
B-b-2(β)	$-V/\Delta q$	-1/42	۶/۱۶	-۴/۵۱	${\tt V}^{\prime}{\rm }\circ {\rm A}$	$-\Lambda/\Upsilon V$	-•/ \ ٩
B-c-1(α)	-V/٣٩	- 2/19	۵/۲۰	-۴/۷۹	۲/۶۰	۴/۴۰	- • / Y •
B-c-1(β)	-V/WV	-1/17	۵/۲۴	-4/VQ	۲/۶۲	۵/۲۸	- • / Y •
B-c-2(α)	-V/YY	-1/27	۵/۳۹	-4/01	۲/۶۹	1/04	- • / Y •
B-c-2(β)	$-V/\Upsilon \circ$	-1/V9	۵/۴۱	-4/44	۲/۷ ۰	۲/۲۰	- • / Y •

به کاهش پایداری و افزایش واکنش پذیری نانو خوشه میانجامد. مقدار پتانسیل شیمیایی تمام مدلهای مورد مطالعه منفی بوده و علامت منفی آن نشان دهنده پایداری ترکیب است. هر چقدر قدرمطلق پتانسیل شیمیایی (۱) بیشتر باشد گونه موردنظر از نظر ترمودینامیکی پایدارتر است. در بین مدلهای مورد مطالعه مدل -B مدل -B در حالت آلفا بیشترین قدرمطلق پتانسیل شیمیایی را داشته و یایدارترین ساختار از نظر ترمودینامیکی است.

RDG بررسی گرادیان چگالی کاهش یافته RDG بررسی گرادیان چگالی کاهش یافته (RDG^۱) برای درک بهتر عملکرد سامانهها و بررسی دقیق برهمکنشهای غیر کووالانسی از اهمیت بالایی برخوردار است. برای این منظور بررسیهایی که صرفا به نقاط بحرانی محدود میشوند مناسب نیستند چرا که برهمکنشهای بسیار ضعیف را در نظر نمیگیرند، به همین دلیل برای تجزیه و تحلیل دقیقتر از شیب کاهش چگالی که تابعی از چگالی الکترونی است، استفاده میشود. بر این اساس برای تمام مدلهای جذبی نمودارهای دو بعدی RDG محاسبه شده و نتایج

بوده، در نتیجه میزان رسانایی، فعالیت شیمیایی و قطبش یـذیری در این مدلها جالب توجه هستند. کمترین مقدار گاف انرژی و در نتیجه بیشترین رسانایی مربوط به مدل B-c-1(α) است. با استفاده از درصد تغییرات انرژی گاف می توان در خصوص رسانایی ترکیب نظر داد. بر این اساس، زمانی که درصـد تغییـر انـرژی گـاف منفـی باشد به این معناست که انرژی گاف مدل جذبی نسبت به قبل از فرایند جذب، کاهش پیدا کرده و زمانی کـه درصـد تغییـر انـرژی گاف مثبت باشد بدین معناست که انرژی گاف مدل جـذبی نسـبت به حالت اولیه افزایش یافته است. بررسی نتایج نشان میدهد که میزان کاهش انرژی گاف در مدل A-b-2 برابر ۹/۵۴٪ است که از سایر مدلهای مورد مطالعه بیشتر بوده در نتیجه میزان رسانایی نانو خوشه در این مدل بیشتر از سایر مدلها است. پارامتر انتقال بار(ΔN) بین جذب شونده (نانو خوشه و دارو) و جاذب (آدنین) برای تمامی مدل های جذبی مقداری منفی است که نشان دهنده انتقال بار در تمام مدلها از جاذب به سمت جـذب شـونده است. به عبارت دیگر نانو خوشه بور فسفید وداروی متصل به آن نقش الکترون گیرنده را بازی میکنند. نکتهٔ جالب توجه آن است کـه در مدلهای جایگزین شده با تیتانیوم بیشترین انتقال بار رخ میدهد که

۵۷۲

^{1.} Reduced density of gradient

۵۷۳

بررسی برهمکنش داروی ضد سرطان ...

در شکل ۴ ارائه شدهاند. این نمودارها شامل سه ناحیهٔ اصلی هستند که با رنگهای آبی، سبز و قرمز نمایش داده شدهاند. رنگ آبى نشان دهندهٔ جاذبه از نوع پيوند هيدروژني يا الكترواستاتيكي، رنگ سبز نشان دهندهٔ جاذبهٔ ضعیف از نوع واندروالسی است و رنگ قرمز اثرات فضایی را که به صورت دافعهاند نشان میدهند [۳۴]. بر اساس نمودارهای RDG تمام مدلهای جـ ذبی، مشـ اهده می شود که در برهم کنش دارو و نانوخوشهٔ خالص با آدنین، بیشترین تراکم گرادیان چگالی کاهش یافته در ناحیهٔ signp(λ2)=0 است که مربوط به پیوند واندروالسی است. بنابراین برهم کنش دارو با آدنین از نوع واندوالسی ضعیف است در حالي كه با جايگزين شدن فلز تيتانيوم بيشترين گراديان چگالی کاهش یافته در ناحیهٔ sign(λ₂)ρ<0 است کـه مربـوط بـه پیوندهای هیدروژنی و الکترواستاتیک متمرکز شده است و ایـن نشان میدهد پیوند بین دارو با آدنین در این حالت محکمتر بوده و استحکام بیشتری دارد. این عامل در اثـرات درمـانی دارو حـائز اهمیت است. بنابراین حضور تیتانیوم در کنار نانو خوشهٔ بورفسفید، باعث می شود دارو به صورت گزینشی تر به آدنین متصل شده و فعالیت رشد و تکثیر بےرویے آن را درسلول ہای سرطاني کنترل کند.

۴.۳. نظریهٔ کوانتومی اتم در مولکول

به منظور بررسی ماهیت پیوندهای غیر کووالانسی در محل جذب نانو خوشهٔ بور فسفید حامل دارو با مولکول آدنین، از نظریهٔ اتمها در مولکولهای ریچارد بدر '[۳۵–۳۷] استفاده شده است. برای این منظور مولفههای توپولوژی در نقطهٔ بحرانی پیوند (BCP) که در آن چگالی الکترونی نسبت به سایر قسمت-های فضا کاهش یافته، محاسبه شدهاند[۲۸]. این مولفهها شامل های فضا کاهش یافته، محاسبه شدهاند[۳۸]. این مولفهها شامل محاسبات این پارامترها در جدول ۳ گرداوری شدهاند. بررسی چگالی الکترونی PBC۹ و لاپلاسین آن ρ_{BCP} نیز برای توصیف نوع پیوندها بسیار کاربردی است. اگر مقادیر لاپلاسین کوچکتر از صفر باشد($\sim \rho_{BCP}$) نشان دهندهٔ برهمکنشهای

کووالانسی قطبی و ناقطبی است. اگر •< ∇'ρ_{BCP} باشـد نشـان دهندهٔ برهمکنش از نوع غیرکووالانسی (واندروالسی، یـونی یـا هیدروژنی) است. در این موقعیتها هر چه مقدار چگالی الکترونی بیشتر باشد پیوند، خصلت یونی بیشتری دارد و هرچه مقدار چگالی الکترونی کمتر باشد خصلت واندروالسبی پیوند بیشتر است. مقدار GBCP چگالی انرژی جنبشی را نشان میدهد که همواره مقدار آن مثبت است و VBCP چگالی انرژی پتانسیل است که اغلب مقداری منفی دارد و HBCP نیز چگالی کل انرژی جنبشی و پتانسیل در نقطهٔ بحرانی پیوند است. در نقطهٔ بحرانی پیوند اگر ∘< H_{BCP} و ∘² ∇^۲ρ_{BCP} باشد پیوند در محل جذب از نوع یونی ضعیف است. اگر · < H_{BCP} و · <₽ T باشد پیوند از نوع کووالانسی قوی است. همچنین اگر علامت •> H BCP و √ P BCP و √ P BCP و √ P BCP كووالانسى ضعيف است [٣٩]. نكتهٔ جالب توجه آن است كه در همهٔ مدلهای مورد مطالعه مقدار ۲^۰pBCP است، در حالی که علامت سایر پارامترها متفاوت است. در مدل های A-a-1، B-b-1 ،A-b-1 ،A-a-2 و B-b-1 مثبت HBCP و HBCP مثبت جذب است از نوع يوني ضعيف است. در ساير مدلها کـه علامـت HBCP منفــی و ∇^۲ρBCP مثبــت بــوده و پیونــد در ناحیهٔ جـذب از نـوع کووالانسـی ضـعیف اسـت. پـارامترهـای دیگری که برای توصیف ماهیت پیونـدهـای شـیمیایی بـه کـار م_روند دو ت_ابع تمركز الكتروني (ELF) و موقعيت اوربیتالهای متمرکز (TLOL) هستند [۴۰]. با توجه به جدول ۳، تمامی مقادیر محاسبه شده برای این دو تابع برای پیوندها در

^{1.} R. W. F. Bader

Y. Electron localization function

Localized orbital locator

جلد ۲۲، شمارهٔ ۲

ادامهٔ شکل ۴.

محل جذب در بازهٔ • تا ۵/۰ قرار دارند کـه حـاکی از برقـراری پیوندهای غیر کووالانسی یا کووالانسـی ضـعیف در آن منـاطق است که نتایج نظریهٔ اتم در مولکول را نیز تأیید میکند.

۳. ۵. بررسی پارامترهای ترمودینامیکی

در این قسمت به منظور بررسی ترمودینامیکی فرایند جذب، پارامترهای ترمودینامیکی از جمله آنتاپی، آنتروپی و انرژی آزاد گیبس برای مدلهای جذبی در دمای ۲۹۸/۱۵ کلوین و با استفاده از رابطهٔ (۶) محاسبه شده و نتایج در جدول ۴ گرداوری شدهاند. محاسبات انجام شده نشان دادند که مقدار آنتالپی برای کلیهٔ مدلهای جذبی مقداری منفی دارد که حاکی از گرماده بودن فرایند جذب و مساعد بودن آن از نظر ترمودینامیکی

است. مدل جذبی A-c-1 با مقدار آنتالپی ۵۸/۳۶ کیلوکالری بر مول منفی ترین مقدار در بین سایر مدلها را دارد. تغییرات آنتروپی در تمامی مدلها مقداری منفی و از نظر ترمودینامیکی نامساعد است. علت منفی بودن آنتروپی نشان دهندهٔ آن است که مولکولهای کوچک نانو، دارو و آدنین ضمن اتصال به یکدیگر به مولکول بزرگی تبدیل می شوند در نتیجه آنتروپی کاهش می یابد. این پدیده نشان از ایجاد پیوندی مستحکم بین جذب شونده و جاذب است.

مقدار انرژی آزاد گیبس در کلیهٔ مدلها به جز A-a-1 مقداری منفی بوده که نشان میدهد فرایند جذب در کلیهٔ مدلها به صورت خود به خودی و از نظر ترمودینامیکی مساعد است.

ں صامتی و عاطفه رضای <u>ی</u>	رضايي	مهدى
-------------------------------	-------	------

جلد ۲۲، شمارهٔ ۲

جدول۳. پارامترهای نظریهٔ اتم در مولکول شامل چگالی کل الکترون φ، انرژی پتانسیل V، انرژی کل الکترون H، انرژی جنبشی G و پارامتر لاپلاسین φ ^γ C در نقطهٔ بحرانی پیوند برحسب واحد اتمی مدلهای جذبی ۵ فلوراسیل متصل شده به نانوخوشه با آدنین، (مدلهای I-a-A تا -Bc-2.

Model	ρ	V	Н	G	$\nabla^2\rho$	ELF	LOL
A-a-1	۰/۰۲۴۵	- • / • Y YV	۰/۰۰۲۳	•/•YQ•	۰/۱۰۹۰	•/• ۵ ۳۳	۰/۱۹۱۰
A-a-2	0/017W	-•/••VV	•/••Y1	৽/৽৽ঀঀ	۰/۰ ۴ ۸۶	0/0TFD	•/1097
A-b-1	•/•۳۵۲	- • / • ٣٣٨	• / • • \ •	•/• * *4	°/14WV	• / • AAA	•/۲۳V۹
A-b-2	•/• ۵ ۲۲	- • / • ۴٧٣	- • / • • % ٩	•/• * •٣	۰/۱۳۳۳	°/717۶	°/747°
A-c-1	৽৾৾৾৸ৼ৽ঀ	- • / 7 / 7 /	- • / • ٩ ٨٢	0/1VFD	o/W o KA	۰/۲۳۶۰	•/٣۵٧٢
A-c-2	۰/۱۱۸۳	-0/7499	- • / • VA9	۰/۱۷۰۶	°/۳۶۶۹	۰/۱۸۷۳	۰/۳۲۴۳
B-a-1	•/• \• \	- • / • ۶۳۲	-•/••٩١	۰/۰۵۴۱	۰/۱۷۹۸	•/\Y •V	۰/۲۷۰۴
B-a-2	۰/۰۸۱۰	-•/\•٩۶	-•/••٩٩	۰/۰۹۹۷	•/۳۵۸۹	°/19°4	۰/۳۰۴۱
B-b-1	•/•۳۵۴	- • / • ٣ ۴ ١	• / • • \ •	۰/۰۳۵۱	0/144V	•/•AAV	۰/۲۳۷۸
B-b-2	۰/۰۳۲۰	-•/•778	•/••• 9	•/•Y9Y	۰/۱۱۹۸	°/°914	۰/۲۴۰۸
B-c-1	•/•۶۵۵	- • / • 199	- • / • 1 • 7	۰/۰V۶۳	0/7 <i>9</i> 47	۰/۱۳۸۳	۰/۲ <i>۸۶</i> ۰
B-c-2	0/0¥9V	-•/•۵۵۲	-०/००۶٩	•/• ۴ ٨٣	•/\۶۵A	۰/۱۱۴۹	°/۲۶۴۹

جدول ۴. پارامترهای ترمودینامیکی در فاز گازی برای مدلهای جذبی ۵ فلوراسیل متصل شده به نانوخوشه با آدنین، (مـدلهـای -a-a تـا -c-B2)

Model	ΔH	ΔG	ΔS
	(kcal/mol)	(kcal/mol)	(cal/mol.K)
A-a-1	$-\Upsilon/4V$	۴/۷۱	-79/1 % °
A-a-2	-1V/VT	$-\Delta/\Delta r$	-40/971
A-b-1	-7 \ / \ °	-19/07	-31/140
A-b-2	-٣١/١٩	-Y •/•V	-٣٧/٣١٣
A-c-1	$-\Delta\Lambda/\Im$	-41/01	-27/937
A-c-2	-44/41	-79/09	-01/422
B-a-2	-19/3	$-V/\mathfrak{P}$	-31/11
B-b-1	$-\mathfrak{V}\circ/\mathfrak{V}$	-18/04	-46/401
B-b-2	-٣٩/٩٧	-78/12	-44/019
B-c-1	-41/00	-79/79	-41/208
B-c-2	-٣٨/٣٩	-70/81	- 41/11 °

شکل۵. طیفهای مرئی و فرابنفش مدلهای جذبی ۵ فلوراسیل متصل شده به نانوخوشه با آدنین، (مدلهای A-a-1 تا B-c-2).

مـدل A-c-1 بـا تغییـر آنتـالپی و انـرژی آزاد گیـبس ۵۸/۳۶ و ۸۲/۵۸ - کیلوکـالری برمـول بیشـترین انـرژی را آزاد کرده و منفی تـرین مقـدار انـرژی آزاد گیـبس را دارد، بنابراین مساعدتـرین مـدل از نظـر ترمودینـامیکی در بـین سایر مدلها است.

۳. ۶. بررسی طیف مرئی –فرابنفش (UV) برای بررسی خواص اپتیکی داروی ۵– فلوراسیل جذب شده بر روی نانو خوشهٔ بور فسفید با مولکول آدنین بر آن شدیم که طیفهای مرئی و فرابنفش همه مدلها را با روش نظریهٔ تابعی چگالی وابسته به زمان مورد بررسی قرار دهیم. نتایج حاصل در شکل ۵ و جدول S۱ پیوست گرداوری

شکل۶. نمودارهای چگالی حالتهای مدلهای جذبی ۵ فلوراسیل متصل شده به نانوخوشه با آدنین، (مـدلهـای A-a-1 تـا -c-B2).

Energy (eV)

10

مدلها در محدودهٔ ۲۰۷ تا ۱۹۴۰ نانومتر است که شامل ناحیـهٔ

ادامهٔ شکل۶. شدهاند. بر اساس نتایج محاسبه شده مقدار م_{max} برای تمام

جلد ۲۲، شمارهٔ ۲

جلد ۲۲، شمارهٔ ۲

بررسی برهم کنش داروی ضد سرطان ...

فش، مرئی

کنش آن با سایر اتمهای نانوخوشهٔ اربیتالهای هومو و لومو به صورت اسپین آلفا و بتا تفکیک می شوند. این عامل باعث قطبیده شدن اسپین الکترونهای این تراز شده است که این عامل باعث تغییر رسانایی و رفتار الکتریکی نانو خوشه می شود. با مقایسهٔ نمودارها، چگالی حالتهای الکترونی مشاهده می شود بیشترین کاهش گاف انرژی نسبت به سایر مدلها مربوط به مدل I-c-B آلفا است، بنابراین تغییر رسانایی در این مدل محسوس تر از سایر مدلها است. نکته قابل توجه آن است که در همه مدلهای جذبی تعداد قلههای هومو و لومو تغییر محسوسی نداشته اما ارتفاع این قلهها در حالت ناخالص کاهش یافته است. که به معنای کاهش چگالی الکترون در این اوربیتالها بوده و می تواند ناشی از فرایند جذب و جایگزینی اتم تیتانیوم در نانو خوشه باشد، که در این حالت انتقالات الکترونی نیاز به انرژی بیشتری داشته و سخت ر انجام می شوند.

۴. نتيجهگيري

در پژوهش حاضر، با استفاده از نظریهٔ تابعی چگالی، خواص ساختاری و الکترونی جذب نانو خوشهٔ بور فسفید حامل دارو ۵ فلوراسیل بر روی مولکول آدنین مورد بررسی قرار گرفته است. مقادیر آنتالیی و انرژی جذب در تمام مدلها منفی بوده بنابراین کلیه فرایندهای جذب به صورت فیزیکی، گرماده و از نظر ترموديناميكي مساعد هستند. نتايج حاصل از محاسبات نشان دادند که مدل A-c-1 با داشتن منفی ترین مقدار انرژی جذب و آنتالپی، مساعدترین مدل از نظر ترمودینامیکی است. مقدار انرژی آزاد گیبس برای همهٔ مدلهای مورد مطالعه منفی بوده و فرایند جذب در تمام مدلهای مورد مطالعه به صورت خود به خودی انجام میشود. مقایسهٔ نتایج پارامترهای کوانتومی و نمودارهای چگالی حالتها نشان میدهند که با جایگزینی فلز تیتانیوم در ساختار نانو خوشهٔ بور فسفید، میزان گاف انرژی و سختی کروی کاهش داشته و در نتیجه میزان رسانایی و فعالیت شیمیایی در حالت جایگزین شده با افزایش همراه است که از این ویژگی میتوان در تهیهٔ حسگرها نیز استفاده کرد. بررسی طیفهای UV نشان دادند که در مدلهای ناخالص نانو خوشه

فرابنفش، مرئی و فروسرخ هستند. مطابق داده ای جـدول S۱ مشاهده می شود که بیشترین درصد انتقالات الکترونی در مدل جذبی A-a-1 در طول موج ۲۷۱/۰۷ nm و مربوط به انتقال -H) در طول موج A-c-1 مدل جذبی A-c-1 در طول موج L+6)B-a-1 و در انتقال (H-4 \rightarrow L) رخ داده است. در مـدل ۲۰۷/۶۲ بيشترين درصد انتقالات الكتروني مربوط به انتقال (H→L+2) در طول موج ۵۳۹/۲۵ و در مدل B-c-1 در طول موج ۴۱۵/۴۷ و برای انتقال (H-2→ L) مشاهده شده است. مطابق شکل ۵ بلندترین قلهها در طول موجهایی ظاهر شدهاند که بیشترین درصد انتقالات را دارند. نتایج حاصل نشان میدهند که با جايگزين كردن فلز تيتانيوم، خواص اپتيكي تركيب دچار تغييـر شده و طول موج جذبی بیشینه بـ طول مـوجهـای بـزرگتـر گرایش پیدا کرده است، به عبارتی طیف آنها وارد ناحیهٔ مرئی شده و خصلت رنگی پیدا میکنند که ایـن خاصـیت را میتـوان به ویژگی اوربیتال d در عناصر واسطهٔ مرتبط دانست. ایـن امـر در شناسایی و ردیابی دارو در محیط زیستی حائز اهمیت است.

۳. ۷. چگالی حالتهای الکترونی ^۱(DOS)

نمودار چگالی حالتها در واقع به معنای تعداد حالتهای در دسترس یک ترکیب در انرژیهای مختلف است. از این روش برای بررسی حالتهای محتمل انتقال الکترونی و بررسی میزان رسانایی مجموعهٔ نانو خوشه – دارو و آدنین استفاده می شود. با نگاهی به چگالی حالتهای الکترونها در یک نیمهرسانا در می یابیم که افزایش انرژی الکترون باعث می شود حالتهای بیشتری برای اشغال فراهم شوند [۴۱ و ۴۲]. برای این منظور نمودارهای DOS با استفاده از نتایج خروجی هومو و لومو محاسبه و نتایج حاصل در شکل ۶ گرداوری شده اند. همان طور که مشاهده می شود در مدلهای ناخالص ظهور یک قلهٔ جدید در محدودهٔ گاف انرژی باعث کوچکتر شدن این محدوده و افزایش رسانایی می مود و این پدیده را می توان به جایگزین شدن فلز تیتانیوم در ساختار نانو خوشه نسبت داد. نکتهٔ جالب توجه آن است که در مرودارهای چگالی حالتها، با وارد شدن اتم تیتانیوم و برهم

F.Density of states

بررسی برهم کنش داروی ضد سرطان ...

جلد ۲۲، شمارهٔ ۲

خالص و جایگزین شده با تیتانیوم میتواند گزینهٔ مناسبی برای تهیهٔ حسگر حساس در تشخیص موقعیت داروی ۵-فلوئوراسیل در بدن باشد. از این ویژگی میتوان در طراحی حامل داروی ضد سرطان مورد نظر در بدن استفاده کرد که نقش مهمی در مراحل درمان و انتقال هدفمند دارو دارد. با تیتانیوم، طیفهای جذبی به ناحیهٔ مرئی منتقل شدهاند که برای شناسایی و ردیابی دارو مناسب هستند. دادههای مربوط به AIM، LOL و ELF نشان دادند که پیوند بین نانوخوشه و جذب شونده در همه مدلهای جذبی، از نوع غیرکووالانسی هستند. نتایج این بررسی ثابت کرد که نانو خوشهٔ بور فسفید **جدول پیوست**

جدول S۱. نتایج مربوط به انتقالات الکترونی بین ترازهای برانگیخته مربوط به طیفهای UV مدلهای A و B.

Model	Exited state	λ (nm)	ν (s ⁻)	f	Configuration orbital
					$-0.05(H-7 \longrightarrow L+5)-0.05(H-6 \longrightarrow L+3)+0.04(H-6)$
	$S_0 \longrightarrow S_{28}$	271.07	4.574	0.0625	\longrightarrow L+6)+0.07(H-5 \longrightarrow L+5)-0.08(H-3 \longrightarrow L+4)+0.04(H-3 \longrightarrow L+7)
					$-0.02(H-2 \longrightarrow L+1)+0.10(H-2 \longrightarrow L+3)+0.27(H-2 \longrightarrow L+6)$
					-0.09(H-7-+L+5)-0.03(H-7-+L+8)-0.03(H-6-+L+4)+0.06(H-
	$S_0 \longrightarrow S_{13}$	296.78	4.177	0.0452	$3 \longrightarrow L+1)+0.2(H-3 \longrightarrow L+3)-0.02(H-3 \longrightarrow L+7)+0.11(H-1)$
A-a-1					$2 \longrightarrow L+0 + 0.11(H-2 \longrightarrow L+3) + 0.08(H-2 \longrightarrow L+4)$
					$-0.09(H-8 \longrightarrow L+1)+0.05(H-8 \longrightarrow L+2)+0.03(H-7 \longrightarrow L+5)+0.14(H-1)$
					$6 \longrightarrow L+1)-0.04(H-6 \longrightarrow L+2)+0.04(H-6 \longrightarrow L+6)-0.07(H-6 \longrightarrow L+6)-0.07(H-6 \longrightarrow L+6))$
	$S_0 \longrightarrow S_{15}$	293.94	4.218	0.0362	$3 \longrightarrow L+4$)-0.02(H-3 $\longrightarrow L+6$)-0.03(H-3 $\longrightarrow L+7$)+0.05(H-
					$2 \longrightarrow L + 0.03(H - 2 \longrightarrow L + 2) - 0.06(H - 2 \longrightarrow L + 3) + 0.06(H - 2 \longrightarrow L + 4) - 0.06(H - 2 \longrightarrow$
					$0.02(H-1 \longrightarrow L+5)$
					$+0.02(H-5 \longrightarrow L+1)-0.03(H-4 \longrightarrow L+5)+0.08(H-2 \longrightarrow L+4)$
	$S_0 \longrightarrow S_{24}$	276.24	4.4883	0.0988	$+0.11(H-1 \longrightarrow L+3)+0.24(H-1 \longrightarrow L+6)-0.02(H-1 \longrightarrow L+7)-$
					$0.04(H \rightarrow L+3) - 0.04(H \rightarrow L+6)$
					$-0.05(H-7 \longrightarrow L+1)-0.03(H-6 \longrightarrow L+5)-0.01(H-5 \longrightarrow L+1)+0.019H-$
A-a-2	$S_0 \longrightarrow S_9$	279.20	4.1717	0.0373	$5 \longrightarrow L+4) - 0.02(H-2 \longrightarrow L+1) + 0.12(H-2 \longrightarrow L+3)$
		296.15		0.0375	$-0.04(H-2 \longrightarrow L+5)+0.09(H-1 \longrightarrow L+3)-0.1(H-1 \longrightarrow L+4)$
					-0.03(H-6 - L+1)-0.03(H-2 - L+5)-0.04(H-2 - L+6)+0.05(H-1)
	$S_0 \longrightarrow S_{10}$		4.1865	0.0456	$1 \longrightarrow L+2) - 0.05(H \longrightarrow L) -$
			4.1005		$0.02(H \rightarrow L+1)+0.36(H \rightarrow L+2)+0.08(H \rightarrow L+6)$
					-0.15(H-1) + 0.26(H-6) + 0.07(H-6) + 1) + 0.04(H-6)
	$S_0 \longrightarrow S_{20}$	283.30	4.3764	0.2733	$4 \rightarrow L$)-0.08(H-4 \rightarrow L+1)-0.03(H-2 \rightarrow L)
					-0.09(H-14) - 0.04(H-8) + 1) + 0.08(H-6) + 0.37(H-6)
	$S_0 \longrightarrow S_{23}$	279.20	4.440	0.1433	$6 \rightarrow L+1)+0.02(H-6 \rightarrow L+2)-0.02(H-4 \rightarrow L)$
A-h-1	50 5525	279.20	1.110	0.1100	+0.06(H-4-1.+1)
1101			4.5398	0.0791	+0.03(H-4-1+2)+0.03(H-4-1+6)+0.05(H-31+4)+0.03(H-4-1+2)+
		273.11			2 - I + 2 + 0.05(H - 2 - I + 3) - 0.03(H - 2 - I + 8)
	$S_0 \longrightarrow S_{26}$				+0.02(H-1) I + 1) - 0.15(H-1) I + 2) + 0.03(H-2) I + 0.02(H-1) I + 0.0
					$1 \longrightarrow I + 7$
					+0.05(H-8-I+1)-0.07(H-7-I+1)-0.02(H-7-I+5)+0.04(H-1)
					4 = 1000 (H = 2 + 1) 0.07 (H = 2 + 1) 0.02 (H = 2 + 5) + 0.04 (H = 2
	$S_0 \longrightarrow S_{25}$	276.42	4.4853	0.0454	2 = I + 5 + 0.07 (H - 1 = I + 4) + 0.19 (H - 1 = I + 7) + 0.03 (H - 1 = I + 4) + 0.03 (H - 1 = I + 1) + 0.03 (H
				0.0434	$2 \longrightarrow E^{+}(3)^{+}(0.0)^{+}(1-1)^{+}(0.1)^{+}(1-1)^{+}(1-1)^{+}(0.0)^{+}(1-1)^{+}(1-1)^{+}(0.0)^{+}(1-1)^{+}(1-$
A-b-2					$0.03(H_1 \rightarrow L) + 0.00(H^1 \rightarrow L+1) + 0.7(H_2 \rightarrow L) + 0.02(H_2 \rightarrow L+1) + 0.03(H_2 \rightarrow L+1) + 0.02(H_2 \rightarrow L+1)$
					$0.03(H_8 - I_{\pm}1) \pm 0.1(H_7 - I_{\pm}1) \pm 0.02(H_5 - I_{\pm}4) \pm 0.06(H_{\pm})$
	Same Sac	275 84	1 1018	0.0323	$-0.05(H-0) = L^{+1} + 0.01(H-7) = L^{+1} + 0.02(H-3) = L^{+1} + 0.00(H-3) = L^{+1} + 0.00(H$
	B ₀ FB ₂₀	275.04	4.4940	0.0525	$1 \longrightarrow I + 4 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0$
					$-0.07(H_{-6}) + 0.03(H_{-5}) + 0.02(H_{-2}) + 0.03(H_{-2}) + 0.05(H_{-2})$
					2 = 1 + 3 + 0 02(H - 2 = 1 + 4) + 0 07(H - 2 = 1 + 6) + 0 03(H - 2 = 1 + 3) + 0 02(H - 2 = 1 + 6) + 0 03(H - 2 = 1 + 6) + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
	$S_0 \longrightarrow S_{22}$	280.96	4.4128	0.0631	$1 \longrightarrow I \rightarrow 0.5(H_1 \longrightarrow I + 2) = 0.05(H_1 \longrightarrow I + 4) = 0.06(H_1 \longrightarrow I + 6) = 0.05(H_1 \longrightarrow I + 6)$
					$1 \longrightarrow L^{+}(1.15) (11-1 \longrightarrow L^{+}(2)-0.05) (11-$
					0.05(H-1-E+7)+0.05(H-E+2)-0.04(H-E+5)
A-c-1					(11-0-2) + 0.02(11-3-2) + 0.10(11-4-2) + 0.00(11-
					$4 \longrightarrow L^{+}3) + 0.03(11^{-}3 \longrightarrow L^{+}0.03(11^{-}2 \longrightarrow L^{+}4) + 0.03(11^{-}2 \longrightarrow L^{+}4) + 0.03(11^{-$
	$S_0 \longrightarrow S_{10}$	207.62	4.1658	0.0606	$1 \longrightarrow L+2 + 0.07 (H-1 \longrightarrow L+3) + 0.03 (H-1 \longrightarrow L+4) - 0.03 (H \longrightarrow L+2)^{-1} = 0.07 (H \longrightarrow L+5) 0.02 (H-3 \longrightarrow L+4) = 0.07 (H \longrightarrow L+2)^{-1} = 0.07$
					0.07(11 - 3 - 3) = 0.02(11 - 3 - 3) = 0.07(11 - 3 - 3) = 0.07(11 - 3 - 3) = 0.07(11 - 3 - 3) = 0.07(11 - 3) =
					$0.02(H_{1}_{5}) \pm 0.02(H_{1}_{5}) \pm 0.02(H_{1}$
					$0.02(11 \longrightarrow L^{+}) + 0.12(11 \longrightarrow L^{+}) = 0.12(11 \longrightarrow L^{+}) = 0.12(11 \longrightarrow L^{+}) = 0.02(11 \longrightarrow L$
Δ_{-C}	S.	200.20	4 1/138	0.0406	$2 = 1 \pm 5 - 0.04(H_1 = J_2) \pm 0.02(H_1 = J_3) $
A-U-2		277.20	4.1430	0.0400	$2 \longrightarrow L + 5) = 0.0 + (11 - 1 \longrightarrow L + 3) + 0.02 (11 - 1 \longrightarrow L + 4) + 0.07 (11 - 1 \longrightarrow L + 4) + 0.07 (11 - 1 \longrightarrow L + 4)$
					1

، شمارهٔ ۲	جلد ۲۲.			نبد سرطان	بررسی برهم کنش داروی ه	2740
	$S_0 \longrightarrow S_8$	302.69	4.0961	0.0366	$\begin{array}{c} -0.15(H-4 \longrightarrow L) + 0.32(H-2 \longrightarrow L) + 0.04(H-2 \longrightarrow L+2) - 0.05(H-2 \longrightarrow L+4) + 0.03(H-2 \longrightarrow L+5) - 0.06(H-2 \longrightarrow L+2) + 0.04(H-1 \longrightarrow L+6) \end{array}$).04(H-)4(H-
	$S_0 \longrightarrow S_3$	326.76	3.7944	0.0302	$\begin{array}{c} 0.014(\text{H-1} \longrightarrow \text{L}) - 0.05(\text{H} \longrightarrow \text{L}) + 0.11(\text{H} \longrightarrow \text{L}+2) \\ 0.04(\text{H} \longrightarrow \text{L}+4) + 0.04(\text{H} \longrightarrow \text{L}+5) + 0.29(\text{H} \longrightarrow \text{L}+6) + 0.14(\text{H} \longrightarrow \text{L}+6) \\) + 0.02(\text{H} \longrightarrow \text{L}+10) \end{array}$)- (H —→ L+7
	S₀ →→ S26	360.27	3.4415	0.0040	$\begin{array}{c} 0.06(H-4 \longrightarrow L+1)A-0.08(H-4 \longrightarrow L+7)A-0.02(H-4 (H-1) \longrightarrow L+5)A+0.02(H-2 \longrightarrow L+6)A+0.04(H-1) \longrightarrow L+5)A+0.03(H-1 \longrightarrow L+7)A-0.03(H-1 \longrightarrow L+8)A+0.03(H-1 \longrightarrow L+3)A-0.02(H \longrightarrow L+3)A-0.02(H \longrightarrow L+4)A-0.05(H \longrightarrow L+5)A+0.02(H \longrightarrow L+3)B+0.04(H-3 \longrightarrow L+3)B+0.09(H-3 \longrightarrow L+8)B+1 \longrightarrow L+3)B+0.14(H-2 \longrightarrow L+5)B-0.07(H-2 \longrightarrow L+7)B+1 \longrightarrow L+14)B-0.04(H \longrightarrow L+3)B+0.03(H \longrightarrow L+8)B+1 \longrightarrow L+14)B-0.04(H \longrightarrow L+3)B+0.03(H \longrightarrow L+8)B+0.03(H \longrightarrow L+$	L+8)A- •L+5)A- L+11)A- -0.04(H- +0.03(H- +0.03(H-)B
B-a-1	S₀ → S₂3	368.96	3.3604	0.0037	$\begin{array}{c} 0.02(H-7 \longrightarrow L+1)A+0.02(H-7 \longrightarrow L+3)A-0.03(H-2 \longrightarrow 0.06(H-2 \longrightarrow L+3)A+0.08(H-1 \longrightarrow L+1)A+0.14(H-1 \longrightarrow 0.03(H-1 \longrightarrow L+4)A-0.05(H-1 \longrightarrow L+6)A+0.02(H \longrightarrow L+6)A+0.02(H \longrightarrow L+13)A+0.05(H-6 \longrightarrow 0.06(H-2 \longrightarrow L+2)B+0.03(H-2 \longrightarrow L+2)B+0.03(H-2 \longrightarrow L+2)B+0.05(H-1 \longrightarrow L+2)B+0.05(H-1 \longrightarrow L+2)B+0.02(H-1 \longrightarrow L+2)B+0.02(H \longrightarrow L+10)B+0.02(H \longrightarrow L+0.03(H \longrightarrow L+7)B+0.05(H \longrightarrow L+10)B+0.02(H \longrightarrow L+10)B+0$	→L+1)A- →L+3)A →L+5)A +L+2)B- →L+7)B →L+7)B →L+3)B- L+2)B ,+17)B
	S₀ → S ₆	539.25	2.2992	0.0032	$\begin{array}{c} 0.03(\text{H-3}_L+3)\text{A}-0.03(\text{H-1}_L+1)\text{A}+0.06(\text{H-1}_\\+0.09(\text{H}_L+1)\text{A}+0.08(\text{H}_L+2)\text{A}-\\0.20(\text{H}_L+3)\text{A}+0.05(\text{H}_L+5)\text{A}-\\0.02(\text{H}_L+6)\text{A}+0.31(\text{H}_L+1)\text{B}+0.22(\text{H}_L+2)\text{E}_L+3)\text{B}-0.07(\text{H}_L+5)\text{B}+0.09(\text{H}_L+7)\text{B}-0.06(\text{H}_\\0.02(\text{H}_L+11)\text{B}+0.03(\text{H}_L+14)\text{B}\end{array}$	•L+3)A 3+0.15(H →L+9)B-
	S₀ → S ₂₄	365.38	3.3933	0.0046	$\begin{array}{c} -0.02(\text{H-18} \longrightarrow \text{L+3})\text{A}-0.04(\text{H-7} \longrightarrow \text{L+2})\text{A}+0.12(\text{H-7} \longrightarrow \text{L+2})\text{A}+0.03(\text{H-5} \longrightarrow \text{L+2})\text{A}+0.08(\text{H-5} \longrightarrow \text{L+3})\text{A}-0.03(\text{H-5} \longrightarrow \text{L+2})\text{A}+0.08(\text{H-5} \longrightarrow \text{L+2})\text{A}+(0.3)(\text{H-3} \longrightarrow \text{L+2})\text{A}+(0.3)(\text{H-3} \longrightarrow \text{L+2})\text{A}+(0.3)(\text{H-3} \longrightarrow \text{L+4})\text{A}-0.02(\text{H-3} \longrightarrow \text{L+2})\text{A}+0.02(\text{H-3} \longrightarrow \text{L+4})\text{A}-0.05(\text{H-2} \longrightarrow \text{L+4})\text{A}-(0.3)(\text{H} \longrightarrow \text{L+3})\text{A}+0.02(\text{H-2} \longrightarrow \text{L+3})\text{A}-0.05(\text{H-2} \longrightarrow \text{L+4})\text{A}-(0.3)(\text{H} \longrightarrow \text{L+6})\text{A}+0.03(\text{H-3} \longrightarrow \text{L+3})\text{A}-0.05(\text{H-2} \longrightarrow \text{L+4})\text{A}-(0.3)(\text{H} \longrightarrow \text{L+6})\text{A}+0.03(\text{H-3} \longrightarrow \text{L+3})\text{B}-0.02(\text{H-2} \longrightarrow \text{L+4})\text{B}-(0.2)(\text{H-1} \longrightarrow \text{L+3})\text{B}+0.04(\text{H} \longrightarrow \text{L})\text{B}-(0.2)(\text{H-1} \longrightarrow \text{L+3})\text{B}+0.05(\text{H-2} \longrightarrow \text{L+4})\text{B}-(0.2)(\text{H-1} \longrightarrow \text{L+3})\text{B}+0.05(\text{H-3} \longrightarrow \text{L+4})\text{B}-(0.2)(\text{H-3} \longrightarrow \text{L+3})\text{B}-(0.2)(\text{H-3} \longrightarrow \text{L+3})\text{B}$	→L+3)A- A-0.02(H-).19(H- 0.02(H- +0.09(H- 4)A •L+2)B
B-a-2	S₀ → S20	378.21	3.2782	0.0039	$\begin{array}{c} 0.05(H-13 \longrightarrow L)A-0.03(H-11 \longrightarrow L)A-0.02(H-7 \longrightarrow L)A\\ 2 \longrightarrow L+4)A-0.04(H-2 \longrightarrow L+6)A-\\ 0.03(H \longrightarrow L)A+0.03(H \longrightarrow L+3)A+0.06(H \longrightarrow L+4)A+\\ 11 \longrightarrow L)B+0.05(H-9 \longrightarrow L)B-0.02(H-1 \longrightarrow L+1)B-0.\\ 1 \longrightarrow L+6)B-0.05(H \longrightarrow L)B+0.02(H \longrightarrow L+1)B-\\ 0.03(H \longrightarrow L+4)B+0.05(H \longrightarrow L+5)B+0.03(H \longrightarrow L+6)B\\ \dots \dots$	+0.09(H- -0.12(H- 02(H- - 3+0.02(H →L+3)A-
	S₀ → S₂	1940.0	0.6391	0.0025	$\begin{array}{c} 0.04(\text{H-5} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	A-0.02(H-).19(H- 0.02(H- +0.09(H-)A •L+2)A
D k 1	$S_0 \longrightarrow S_1$	394.2	3.1451	0.0187	$\begin{array}{c} -0.11(H-17 \longrightarrow L)A+0.12(H-1 \longrightarrow L)A+0.03(H-1 \longrightarrow L)A+0.03(H-1 \longrightarrow L)A+0.03(H-1 \longrightarrow L)A+0.03(H-1 \longrightarrow L)A+0.03(H-2 \longrightarrow L+1)A+0.09(H-16 \longrightarrow L)B+0.05(H-5 \longrightarrow L)A+0.03(H-3 \longrightarrow L+4)B+0.21(H-2 \longrightarrow L+3)B+0.03(H-2 \longrightarrow L+3)B+0.03(H-2 \longrightarrow L+2)B+0.25(H \longrightarrow L+8)B+0.05(H \longrightarrow L+2)B+0.25(H \longrightarrow L+8)B+0.05(H \longrightarrow L+2)B+0.25(H \longrightarrow L+8)B+0.05(H \longrightarrow L+2)B+0.25(H \longrightarrow L+2)B+0.25(H \longrightarrow L+3)B+0.05(H \longrightarrow L+2)B+0.05(H \longrightarrow L+2)B+0$	L+2)A- L+3)B →L+3)B- L+11)B
D-U-1	$S_0 \longrightarrow S_{10}$	453.41	2.7345	0.0078	$0.02(H-21 \longrightarrow L+2)B-0.05(H-6 \longrightarrow L+2)B+0.03(H-5 \longrightarrow L+2)B-0.06(H-4 \longrightarrow L+2)B-0.10(H-2 \longrightarrow L+3)B$ +1 13(H → L+2)B+0.05(H → L+3)B	→L+3)B-
	$S_0 \longrightarrow S_{22}$	374.66	3.3093	0.0035	$-0.04(H-3\implies L)A+0.04(H-2\implies L)A+0.03(H-2\implies L+5).$ $1\implies L+3)A-0.09(H-1\implies L+4)A-0.03(H\implies L+2)$	A-0.03(H-)A-

۵۸۳			(ی ضد سرطان	بررسی برهمکنش دارو:	جلد ۲۲، شمارهٔ ۲
	S₀>S ₁₂	411.69	3.0116	0.0049	$\begin{array}{c} 0.02(H \longrightarrow L+5)A-0.03(H-13 \longrightarrow L)B-(\\ 5 \longrightarrow L+2)B-0.03(H-5 \longrightarrow L+8)B+0.6\\ 2 \longrightarrow L+2)B+0.16(H-2 \longrightarrow L+8)B+0.02(\\ 1 \longrightarrow L)B\\ 0.02(H-3 \longrightarrow L+4)A-0.04(H-3 \longrightarrow L+5)\\ 0.04(H-2 \longrightarrow L+5)A-0.02(H-1 \longrightarrow L)A-0.\\ 1 \longrightarrow L+4)A+0.08(H-1 \longrightarrow L+5)A+0.03\\ 3 \longrightarrow L+3)B-0.08(H-2 \longrightarrow L)B-0.5(1)\\ \end{array}$	h.13(H-5 L)B-0.03(H-8(H-2 L)B + 0.16(H-H-2 L+11)B-0.03(H-1 L+11)B-0.03(H-1 L+2)A-0.05(H-0.05(H-1)A-0.05(H
	S₀ → S ₂₁	376.09	3.2967	0.0044	$2 \longrightarrow L+3)B+0.09(H-1 \longrightarrow L+2)B+0.14$ $1 \longrightarrow L+6)B+0.14(H \longrightarrow L)B-0.03(H \longrightarrow L+2)B+0.02(H-4 \longrightarrow L+2)A-0.09(H-2 \longrightarrow L+2)A-0.03(H-1 \longrightarrow L+2)A-0.03(H-1 \longrightarrow L+2)A+0.04(H \longrightarrow L+1)A$ $2 \longrightarrow L)B+0.02(H-2 \longrightarrow L+5)B-0.04(H \longrightarrow L+1)B+0.16(H-1 \longrightarrow L+1)B+0.16(H-1 \longrightarrow L+1)B+0.02(H-2 \longrightarrow L+2)B+0.04(H \longrightarrow L+1)B+0.04(H \longrightarrow L+$	$ (H-1 \rightarrow L+3)B-0.06(H-L+4)B+0.15(H \rightarrow L+6)B$ A-0.03(H-2 - L+1)A- .)A-0.07(H-1 - L+2)A -0.05(H - L+2)A-0.08(H-L+2)A-0.05(H - L+6)B+0.05(H-0.02(H-1 - L+3)B)
В-0-2	S₀ →→ S ₂₈	315.79	3.5244	0.0043	$+0.09(H \longrightarrow L+2) +0.09(H \longrightarrow L+2) +0.09(H \longrightarrow L+2) +0.02(H \longrightarrow L+5)B +0.02(H \longrightarrow L+5)B +0.02(H \longrightarrow L+1)B +0.03(H -1 \longrightarrow L+3)A +0.03(H -1 \longrightarrow L+3)A +0.03(H -1 \longrightarrow L+1)B +0.03(H -2 \longrightarrow L+1)B +0.03(H -2 \longrightarrow L+1)B +0.07(H -2 \longrightarrow L+4)B -0.02(H -2 \longrightarrow L+4)B -0.02(H -2 \longrightarrow L+4)B -0.02(H -2 \longrightarrow L+1)B +0.03(H -1 \longrightarrow L+4)B +0.03(H -1 \longrightarrow L+4)B +0.03(H -1 \longrightarrow L+4)B +0.06(H -1 \longrightarrow $)B- $0.04(H \rightarrow L+6)B+0.08(H 0.07(H \rightarrow L+13)B +3)A-0.03(H-1 \rightarrow L)A-$ $7)A+0.059H \rightarrow L+2)A -3)B+0.05(H-3 \rightarrow L+5)B -2)B-0.08(H-2 \rightarrow L+3)B -6)B+0.03(H-2 \rightarrow L+3)B -6)B+0.03(H-2 \rightarrow L+9)B -11)B-0.02(H-1 \rightarrow L+2)B -5)B-0.02(H-1 \rightarrow L+2)B -11)B-0.05(H \rightarrow L+1)B -10.05(H \rightarrow L+1)B -1$
	S₀ → S16	415.47	2.9842	0.0525	$+0.02(H \rightarrow L+2)B+0.03(H \rightarrow L+2)B+0.03(H \rightarrow L+2)A+0.03(H \rightarrow L+2)A+0.03(H \rightarrow L+2)A+0.02(H \rightarrow L+2)A+0.02(H \rightarrow L+3)A+0.03(H \rightarrow L+3)A+0.03(H \rightarrow L+3)B+0.03(H \rightarrow L+3)B+0.03(H \rightarrow L+3)B+0.03(H \rightarrow L+3)B+0.04(H \rightarrow L+2)B+0.04(H \rightarrow L+4)B+0.02(H \rightarrow L+2)B-0.04(H \rightarrow L+4)B+0.02(H \rightarrow L+6)B+0.02(H \rightarrow L+6)B+0.0$	$\begin{array}{l} I \longrightarrow L+14)B \\ .05(H-3 \longrightarrow L)A-0.07(H-1-2 \longrightarrow L+2)A + 0.02(H-3(H \longrightarrow L+4)A + 0.05(H-1-2 \longrightarrow L+1)B-0.04(H-0.02(H-1 \longrightarrow L+3)B-1-0.02(H \longrightarrow L+3)B-1-0.02(H \longrightarrow L+5)B-1-0.02(H \longrightarrow L+16)B \\ \hline \end{array}$
B-c-1	S₀ → S13	429.72	2.8852	0.0183	$\begin{array}{c} -0.02(H-14 \longrightarrow L+1)A+0.02(H-5 \longrightarrow L+2)A+0.02(H-5 \longrightarrow L+2)A+0.02(H-5 \longrightarrow L+2)A+0.03(H-3 \longrightarrow L+2)A+0.03(H-3 \longrightarrow L+2)A+0.03(H-3 \longrightarrow L+2)A+0.03(H-3 \longrightarrow L+2)A+0.03(H-2 \longrightarrow L+2)A+0.03(H-2 \longrightarrow L+2)A+0.03(H-2 \longrightarrow L+2)A+0.04(H-1 \longrightarrow L+1)A+0.04(H-1 \longrightarrow L+1)A+0.04(H-1 \longrightarrow L+2)A+0.04(H-2 \longrightarrow L+3)A+0.04(H-2 \longrightarrow L+3)B+0.07(H \longrightarrow L$) $A-0.07(H-5 - L+1)A$ 3) $A-0.02(H-5 - L+9)A-$;) $A-0.08(H-3 - L+3)A-$ A-0.12(H-2 - L+1)A 3) $A-0.03(H-2 - L+9)A$ A-0.03(H-1 - L+3)A - - L)B-0.02(H- - L+1)B-
	S₀ →→ S ₂₈	364.79	3.3988	0.0087	$\begin{array}{c} 0.04(H \longrightarrow L + 3)B + 0.04(H \longrightarrow L + 4) \\ -0.26(H \longrightarrow L + 4)A + 0.04(H \longrightarrow L + 5)A + 0.03(H - 5)A $	$\begin{array}{l} B+0.04(H\longrightarrow L+10)B\\ 0.03(H\longrightarrow L+14)A-0.03(H\rightarrow L)B+0.04(H-4\longrightarrow L)B-\\ 0.12(H\rightarrow L+2)B-0.02(H-\\ 0.04(H\longrightarrow L+1)B-\\ 0.03(H\longrightarrow L+5)B\\$
	S₀>S ₂₅	374.43	3.3113	0.0088	$\begin{array}{c} -0.10(11-0.00(1$	$1-2 \rightarrow L+3$)A +0.10(H- 1.08 (H-1 \rightarrow L+4)A A+0.04(H \rightarrow L+6)A-)B-0.02(H-2 \rightarrow L+4)B 1)B+0.13(H \rightarrow L+2)B-
В-с-2	S₀ → S ₆	575.1	2.1559	0.0048	$\begin{array}{c} 0.02(H \longrightarrow L+5)B+0.02(H \longrightarrow L+5)B+0.02(H \longrightarrow L+5)B+0.02(H \longrightarrow L+5)B+0.02(H \longrightarrow L+5)B+1.14(H \longrightarrow L)B+0.02(H \longrightarrow L+5)B+1.14(H \longrightarrow L+3)B+0.07(H \longrightarrow L+5)B+0.07(H \longrightarrow L+5)B+0$	$H \rightarrow L+9B$ $D5(H \rightarrow L+2)A-0.09(H - L+1)B-0.06(H \rightarrow L+2)B-10.06(H \rightarrow L+2)B-10.06$
	S₀ →→ S ₁₄	433.62	2.8593	0.0044	$\begin{array}{c} 0.02(H-2 \longrightarrow L)A + 0.02(H-1 \longrightarrow L+3)A \\ 2 \longrightarrow L)B - 0.03(H-1 \longrightarrow L+2)B + 0.09(1 \\ 1 \longrightarrow L+5)B + 0.04(H-1 \longrightarrow L+6) \\ + 0.28(H \longrightarrow L+1)B - 0.21(H \longrightarrow L+2) \\ + 0.04(H \longrightarrow L+4)B - 0.02(H \longrightarrow L+$	-0.04(— HL)A -0.03(H- H-1 L+3)B -0.04(H- B-0.25(H L)B 2)B-0.25(H L+3)B H L+8)B

جلد ۲۲، شمارهٔ ۲

۵ مراجع

576

- 1. V Kumar, Comp. Mat. Sci. 35 (2006) 375.
- 2. D1 Strout, J. Phys. Chem. 104 (2000) 3364.
- 3. R Wang, D Zhang, and C Liu, Chem. Phys. Lett. 411 (2005) 333.
- 4. D Farmanzadeh and M Keyhanian, J. Theor. Chem. Accounts. 138 (2019) 335.
- 5. S Hussain, Study J. Chem. 13 (2020) 7641.
- 6. A Soltani, et al., J. Phys. Chem. Solids. 75 (2014) 1099.
- 7. R Padash, et al., J. Appl. Phys. 124 (2018) 582.
- 8. A A Peyghan, M B Tabar, and S Yourdkhani, J. Cluster Sci. 24 (2013) 1011.
- 9. M Rezaei Sameti, Arab. J. Chem. 8 (2015) 168.
- 10. Z Peralta Inga, et al, Nano Let. 3 (2003) 21.
- 11. F A Bulat, J. Phys. Chem. 33 (2012) 8644.
- 12. A Soltani, J. Phys. Chem. Solids 75 (2014) 1099.
- 13. J Beheshtian, Comput. Mater. Sci. 54 (2012) 115.
- 14. M T Baei, Physica B 444 (2014) 6.
- 15. A Hosseinian, J. Cluster Sci. 28 (2017) 2681.
- 16. D Goette, J. Am. Acad. Dermatol. 4 (1981) 633.
- 17. J Y Douillard, et al., Lancet 355 (2000) 1041.
- 18. H Newton, "Handbook of Brain Tumor Chemotherapy, Molecular therapeutics, and immunotherapy", Academic Press (2006).
- 19. M Rezaei Sameti and K J Behbahani, Phys. Chem. Res. 6, 1 (2018) 31.
- 20. M Rezaei Sameti and P Zarei, Adsorption 24, 8 (2018) 757.
- 21. M Rezaei Sameti and S K Abdoli, J. Mol. Str. 1205 (2020) 127593.
- 22. M J Frisch, et al., "GAUSSIAN 09", Gaussian, Inc., Pittsburgh, PA (2009).
- 23. M Rezaei Sameti and Kh Hadian, J. Phys. Res. 20 (2016) 39.
- 24. M Rezaei Sameti and S Yaghoobi, Comp. Condensed Mat. 3 (2015) 21.
- 25. M Rezaei Sameti, Physica E 44 (2012) 1770.
- 26. M Rezaei Sameti and E Shiravand, Adsorption 26 (2020) 955.
- 27. M Najafi, Vacuum 135 (2017) 18.
- 28. A Soltani, et al., J. Phys. Chem. Solids 75 (2014) 1099.
- 29. A Soltani, et al., Appl. Surf. Sci. 261 (2012) 262.
- 30. L Ferrari, et al., J. Colloid Interface Sci. 347 (2010) 15.
- 31. J Rouquerol, et al., "Adsorption by powders and porous solids: principles, methodology and applications", Academic press (2013).
- 32. Y Wu, Appl. Sci. 8, 12 (2018) 2466.
- 33. P Ferrin, et al., Surf. Sci. 606 (2012) 679.
- 34. N K Nkungli and J N Ghogomu, J. Mol. Model 23 (2017) 200.
- 35. R F W Bader, "Atom in molecules: A quantum theory", Oxford university press (1994).
- 36. R F W Bader, Phys. Rev. B 49 (1994) 13348.
- 37. R F W Bader and T T Nguyen-Dang, Adv. Quantum Chem. 14 (1981) 63.
- 38. A Becke, "The quantum theory of atoms in molecules: from solid state to DNA and drug design", John Wiley & Sons (2007).
- 39. T Lu and F Chen, J. Comput. Chem. 33 (2012) 580.
- 40. E R Johnson, J. Am. Chem. Soc. 132 (2010) 6498.
- 41. M Nayebzadeh, H Soleymanabadi, and Z Bagheri, Monatsh. fur Chem. 145 (2014) 1745.
- 42. N M O'boyle, A L Tenderholt, and K M Langner, J. Comput. Chem, 29 (2008) 839.