پتــرولوژی، سال دوم، شماره هشتم، زمستان ۱۳۹۰، صفحه ۹۹–۱۱۴ تاریخ دریافت: ۱۳۸۹/۱۲/۱۱

پترولوژی و خاستگاه تودهنفوذی گرانیتوییدی وش، شمال اصفهان

علیخان نصر اصفهانی * و به آفرین شجاعی گروه زمینشناسی، دانشگاه آزاد اسلامی واحد خوراسگان، خوراسگان، ایران

چکیدہ

توده نفوذی وش، در شمال غرب نطنز واقع شده است و بخشی از کمربند ماگمایی ارومیه- دختر است. این پلوتـون با سن احتمالی الیگومیوسن در نتیجه فعالیتهای شدید ماگمایی در طی و پس از کـوهزاد آلپی تشکیل شده است. ترکیب تـوده نفوذی از گرانودیوریت تا تونالیت تغییر میکند. کـانیهای اصلی تشکیل دهنـده ایـن تـوده شامل کـوارتز، پلاژیـوکلاز و آلکالیفلدسپار است و کانیهای فرومنیزین آن بیوتیت و آمفیبول است. این توده حاوی انکلاوهای دیـوریتی با ابعاد مختلف گرانیتهای منیزیمی نوع I است. توده نفوذی وش با غنیشدگی از عناصر با شعاع یونی بـرّرگ (LLE) همچـون S. ما ها گرانیتهای منیزیمی نوع I است. توده نفوذی وش با غنیشدگی از عناصر با شعاع یونی بـرّرگ (LLE) همچـون S. ما ه و از منبت به کندریت نشانگر غنیشدگی وض با غنیشدگی از عناصر با شعاع یونی بـرّرگ (LLE) همچـون S. ما ه و از نسبت به کندریت نشانگر غنیشدگی متوسط تا زیاد از REE₃ همچون dN، Y و Z مشخص میشود. الگوهای همینوایت در توزیع HREE₈ و نی از عناصر با پتانسیل یونی بالا (Gd/Yb) همچون dN، Y و Z مشخص میشود. الگوهای [لاًـوی تفریـقافتـه در توزیع HREE₈ را عرضـه می کند [AN-۹-۱/۸] میتواند از مالای منفی نسـبتاً کمی از خـود نشـان می دهد. [(۲/۱۰-یسبت به کندریت نشانگر غنیشدگی متوسط تا زیاد از BR آنومـالی منفی نسـبتاً کمی از خـود نشـان می دهد. [(۲/۱۰ ایسبت با کندریت این ماگما احتمالاً میتواند از ماگمای اولیه در پوسته زیـرین حاصل شـده باشـد کـه منشاً آن ذوببخشی پروتولیتهای پوستهای و ماگماهای بازالتی حاصل از ذوببخشی گوههای گوشتهای است. ویژگیهای ژنوشـیمیایی و ترکیبات روتولیتهای پوستهای و ماگماهای بازالتی حاصل از ذوببخشی گوههای گوشتهای است. ویژگیهای ژنوشـیمیایی و ترکیبات محیط تکتونیکی گرانیتویید و ش با فعالیتهای هاگمایی همزمان با فرورانش یا فازهای کششی پس از تصادم خردقـاره است. محیط تکتونیکی گرانیتویید و ش با فعالیتهای هاگمایی همزمان با فرورانش یا فازهای کششی پس از تصادم خردقـاره است.

واژههای کلیدی: وش، نطنز، گرانیت نوع I، الیگومیوسن، کالکآلکالن

 ۱). ناحیه نطنز قسمتی از پهنه ساختاری ارومیه - دختر است. این پهنه به صورت کمربند آتشفشانی با روند شمال غرب - جنوب شرق از ناحیه دریاچه ارومیه در

توده نفوذی وش در شـمال اصـفهان، در فاصـله ۶۳ کیلومتری جنوبغرب شهر نطنز واقع شده است (شـکل

* nasr@khuisf.ac.ir

مقدمه

آذربایجان غربی تا آتشفشانهای بزمان در بلوچستان کشیده شده است (معین وزیری، ۱۳۷۵؛ نصراصفهانی و وهابیمقدم، ۱۳۸۹) و سن سنگهای آتشفشانی در آن از ائوسن و الیگوسن شروع و به آتشفشانهای عهد حاضر ختم می شود (درویش زاده، ۱۳۶۳؛ قربانی، ۱۳۸۲).

شـــکل ۱ – A) رادهــای دسترســی بــه منطقــه و B) موقعیــت جغرافیـــایی منطقـــه بـــر روی نقشـــه ایـــران، برگرفتـــه از Shahabpour (۲۰۰۵)، با تغییرات

سن توده نفوذی وش، الیگومیوسن است که مجموعههای آتشفشانی ائوسن و سنگهای رسوبی کرتاسه را قطع نموده است (باباخانی و همکاران، ا۳۲۲). مطالعات بسیاری بر روی ناحیه کاشان- نطنز انجام شده است (نصراصفهانی و احمدی، ۱۳۸۷). از جمله مهمترین تحقیقات انجام شده در منطقه می توان به مطالعات زمین شناسی Pourhosseini (۱۹۸۱) اشاره نمود. وی در مطالعات خود بر روی تودههای نفوذی ناحیه نطنز پیشنهاد می کند که ماگمای سازنده سنگهای درونی در ناحیه نطنز، حاصل ذوب پوسته و یا گوشته اقیانوسی بوده و حاصل زیرراندگی پوسته اقیانوسی به زیر ورقه ایران مرکزی است. شیریان

نزدیکی منطقه مورد مطالعه را کالکآلکالن معرفی کرده است. امین الرعایایی و همکاران (۱۳۸۶) و کنعانیان و همکاران (۱۳۸۷) کانیشناسی، ژئوشیمی ایزوتـوپهـای پایدار و خاستگاه زمینساختی سنگ های آتشفشانی اطراف این توده نفوذی را بررسی کردهاند. هنرمند و همکاران (۱۳۹۰) در تحلیلهای ژئوشیمیایی مجموعه تودههای نفوذی غرب و شمالغربی نطنز منشأ ماگمای مجموعههای گرانیتوییدی را اختلاط ماگمای مشتق شده از گوشته و ماگمای منتج از پوسته میدانند. Haschke و همکاران (۲۰۱۰)، محیط تکتونوماگمایی کمان کوهزاد گروه آندی را برای تشکیل این تودههای نفوذی در اطراف شهر نطنز پیشنهاد می کنند. -Nasr Esfahani و Esfahani) بر اساس ترکیب شیمی کانی آمفیبول مقدار میانگین فشار حاکم بر تودهنفوذی وش را در زمان جایگزینی در حدود میانگین ۱/۴ (۱/۹۹-۰/۹۸) کیلوبار تخمین زدهاند. در نوشتار حاضر بر اساس مطالعات پتروگرافی و شیمی سنگ کل، خاستگاه توده نفوذی گرانیتوییدی وش، بررسی میشود.

زمینشناسی عمومی

مجموعههای نفوذی در منطقه نطنز دارای تغییرات ترکیبی از گابرو تا گرانیت هستند (هنرمند، ۱۳۸۵). گابروها بهعنوان قدیمی ترین واحد در منطقه بوده و گرانیتوییدها، آنها را قطع کردهاند ,.(Haschke *et al.* کرانیتوییدها، آنها را قطع کردهاند ,.(Haschke *et al.* (2010). توده نفوذی گرانیتوییدی وش با مشخصات هندسی متوسط عرض ۵ و طول ۱۵ کیلومتر بزرگترین توده نفوذی گرانیتوییدی در ناحیه نطنز است (شکل ۲). گسل نطنز با امتداد شمال غرب - جنوب شرق، بخشهای شرقی و شمالی توده را قطع نموده است. این نفوذی در سنگهای آتشفشانی ائوسن و کربناته کرتاسه جایگزین شده است. در حواشی این توده، رخنمونهای مافیک تر نیز حضور دارند اما حجم بسیار کمی را به خود اختصاص داده و توسط توده گرانیتوییدی قطع شده ۱۰۰

آتشفشانی عمدتاً آندزیت، تراکیآندزیت، آندزیتبازالت و توفهای اسیدی است. بین توده گرانیتوییدی و سنگهای آتشفشانی در برگیرنده هاله دگرگونی مجاورتی در حد رخساره آلبیت- اپیدوت هورنفلس ایجاد شده است (کنعانیان و همکاران، ۱۳۸۷). توده

نفوذی گرانیتوییدی دارای طیف ترکیبی از دیوریت تا کوارتزمونزونیت است. از مشخصات بارز این توده نفوذی در صحرا، حضور مقادیر زیادی انکلاوهای گرد و بیضوی با منشأ آذرین و ترکیب دیوریت و تا حدی مونزودیوریت است.

شکل ۲- نقشه زمینشناسی تودهنفوذی وش و نیم_ارخ عرضی از این توده، برگرفته از باباخانی و همکاران (۱۳۷۲)، با تغییرات

عناصر اصلی و فرعی آنیالیز شیمیایی شد (جدولهای ۱ و ۲). تعدادی از کانیهای آمفیبول، بیوتیت، فلدسپار و اوپاک در نمونه های انتخابی، با SX100 آنیالیز الکترون میکروپروب SX100 SX100 و ما02 و میکروپروب 3000 و 3000 و 20kev و 20kev و 20ke در آزمایشیگاه مرکز تحقیقات فرآوری مواد معدنی ایران، بررسی شدند (جدولهای ۳ تا ۶). تفکیک مقادیر آهن ۲ و ۳ در فرمول کانیهای فرومنیزین به کمک

روش انجام پژوهش طی بازدیدهای صحرایی از بخشهای دگرسان نشده توده نفوذی وش، ۷۴ نمونه سنگی برداشت شد و پس از تهیه ۴۸ مقطع نازک و مطالعه آنها با میکروسکوپ پلاریزان، ۱۶ نمونه (۱۱ نمونه از ایم میکروسکوپ پلاریزان، ۱۶ نمونه (۱۱ نمونه از توده اصلی و ۵ نمونه انکلاو) به روش ICP-MS در آزمایشگاه Chemiex کانادا و ۵ نمونه به روش XRF در شرکت بهین آزمون سیاهان در شهرک علمی تحقیقاتی دانشگاه صنعتی اصفهان

روش های پیشنهادی Droop (۱۹۸۷) و Leake و همکاران (۱۹۹۷) انجام شده است.

پتروگرافی

ترکیب سنگهای توده نفوذی وش، با استفاده از آنالیز مودال، گرانودیوریت تا تونالیت است. کانیهای اصلی شامل کوارتز، فلدسپار پتاسیک، پلاژیوکلاز و نیز کانیهای فرومنیزین از نوع آمفیبول و بیوتیت است. مهمترین بافتهای آن پوئی کیلیتیک است. در نمونه دستی این سنگها درشتبلور و ضریبرنگینی آنها متناسب با فراوانی کانیهای مافیک متغیر است. کوارتز در حدود ۲۰ درصد مودال ترکیب کانیشناسی را تشکیل میدهد، این کانی خاموشی موجی دارد.

فلدسپارهای پتاسیک بهطور معمول دارای بلورهای درشت با طولی حدود ۲ میلیمتر است (شکل ۳-A و B). تعدادی از فلدسپارها بهطور جزییی به کانیهای رسی و سریسیت تجزیه شده است.

پلاژیوکلازهای شکلدار تا نیمه شکلدار دارای اندازه بلورهای از ۵/۰ تا ۲ میلیمتر است (شکل ۳– ۸) و در برخی بافت سلولی اسفنجی مشاهده می شود (شکل ۳– 2) که نشان دهنده سرعت بالای رشد و سرعت پائین هسته گذاری است (Pe-Piper et al., 2002). ترکیب هسته گذاری است (Pe-Piper et al., 2002). ترکیب بلورهای پلاژیوکلاز از آندزین تا لابرادوریت است و اغلب منطقهبندی نشان می دهد. ترکیب شیمیایی پلاژیوکلازها در توده گرانیتوییدی از مرکز به حاشیه دارای دامنه تغییرات محتوای آنورتیت ۶۴ تا ۶۷ درصد است (شکل ۴).

جدول ۱- نتایج تجزیه شیمیایی عناصر اصلی (%wt) ۱۴ نمونه از منطقه وش بهروش ICP-MS (« نمونههای تجزیهشده به روش XRF)

	V1	V4	V6	Vsx11*	V13	V14	Vs15	Vs17	Vsx17*	Vsx18*	Vs22	Vse3	Vse10	Vsxe10*	Vsxe11	Vsxe12
					(Granitoi	d							Enclave	3	
SiO₂	67.75	66.2	65.7	67.75	65.78	64.6	65.64	65.14	64.6	65.78	64.12	52.2	54.39	55.81	55.13	54.29
Al₂O₃	14.61	16.25	16.4	14.02	15.31	16.1	15.85	15.52	16.1	15.31	15.32	16.48	17.11	17.48	17.02	17.79
Fe₂O₃	3.92	4.06	4.27	3.12	4.49	4.32	5.2	4.27	4.32	4.49	5.03	12.36	8.24	8.22	10.31	8.23
CaO	4.9	4.21	4.39	4.9	4.76	4.8	4.41	4.27	5.06	4.76	5.11	6.75	7.18	6.31	7.14	6.96
MgO	1.64	1.62	1.62	1.64	1.8	1.42	1.67	2.84	1.42	2.34	2.29	4.21	4.43	4.67	4.43	4.32
Na₂O	4.04	4.05	4.06	4.01	3.7	3.9	4.07	3.82	2.9	2.93	4.03	4.34	4.39	4.47	4.4	4.36
K₂O	2.9	1.91	2.06	2.9	2.1	2.7	2.14	3.08	2.7	2.1	2.92	1.47	1.75	1.8	2.9	1.61
Cr₂O₃	0.07	0.03	0.02	0.004	0.07	0.06	0.003	0.003	0.02	0.03	0.004	0.009	0.007	0.1	0.002	0.008
TiO₂	0.48	0.43	0.43	0.48	0.5	0.72	0.42	0.44	0.72	0.43	0.45	0.69	0.67	0.54	0.63	0.78
MnO	0.06	0.09	0.1	0.06	0.09	0.16	0.09	0.09	0.16	0.09	0.1	0.26	0.26	0.04	0.18	0.26
P₂O₅	0.1	0.12	0.12	0.95	0.12	0.05	0.13	0.18	0.05	0.09	0.16	0.15	0.11	0.11	0.12	0.13
SrO	0.07	0.04	0.04	0.04	0.06	0.06	0.05	0.03	0.05	0.1	0.03	0.03	0.03	0.04	0.05	0.03
BaO	0.09	0.07	0.08	0.07	0.9	0.05	0.08	0.05	0.06	0.08	0.06	0.05	0.05	0.08	0.02	0.05
LOI	0.1	1.06	0.68	0.1	1.4	1.4	0.3	0.26	0.9	1.4	0.4	1.4	1.4	1.2	0.9	1.2
Total	100	100	99.97	100	100	100	100	99.99	99.06	99.93	100	100	100	100	100	100
Mg#	45.52	44.39	43.14	46.21	44.49	39.69	39.9	57.08	39.63	51.02	46.34	40.51	51.81	53.2	46.41	63.17
ACNK	0.94	0.99	0.97	0.91	0.9	0.89	0.93	0.89	0.95	0.97	0.8	0.78	0.77	0.84	0.73	0.82
(Nb/Zr) _N	0.8	0.82	0.89	1.08	0.86	0.78	0.86	0.9	0.84	0.86	0.89	1.02	1.8	1.36	1.57	1.46
Eu/Eu*	0.75	1.01	0.86	0.92	0.99	0.9	0.99	1.02	0.95	1.05	1.17	0.78	0.52	0.62	0.56	0.59
(La/Yb) _N	9.57	10.49	9.45	9.9	9.59	13.17	9.03	7.94	10.65	9.16	7.93	5.33	2.66	3.62	3.27	3.44
(Gd/Yb) _N	1.84	1.45	1.32	1.37	1.21	1.86	1.09	1.1	1.1	1.24	1.1	1.29	1.07	1.15	1.17	1.161
ζ	22.02	28.37	28.69	20.65	23.22	16.94	28.04	26.59	18.33	28.79	25.08	17.59	18.98	24.09	20.03	17.21
FM	0.58	0.59	0.6	0.57	0.6	0.63	0.64	0.46	0.63	0.52	0.56	0.62	0.51	0.5	0.4	0.57
K₂O/Na2O	0.717	0.47	0.507	0.72	0.56	0.69	0.53	0.8	0.93	0.72	0.72	0.34	0.4	0.4	0.37	0.66
δ	0.28	0.25	0.26	0.27	0.25	0.3	0.27	0.31	0.25	0.22	0.32	0.63	0.53	0.48	0.6	0.53

	0.2 4.5 6.3 4.53 4.53 4.53 4.53 4.53 4.53 4.53 4.53 4.53 4.54 4.14 4.13 4.14 4	0.2 4.5.0 4.5.3 4.5.3 4.5.3 4.5.3 4.5.3 4.5.3 4.7.1 4.5.3 4.7.3	Sample	V.Am.4.	5 V.Am.4.4	V.Am.4.3	V.Am.4.	2 V.Am.4.	V.Am.o.	P.O.IIIA.V C	C.WIIIA.V	V.AIII.0.2	V.AID.0.1	Unit V1 V4 V6 Vsx11 V13
(02) 1.22 1.41 1.36 1.07 1.35 0.66 0.73 1.37 1.30 0.92 Ag ppm 41 (100) 0.33 4.37 1.33 1.33 1.33 1.33 1.33 1.33 1.39 0.92 Ag ppm 41 (100) 0.34 0.73 0.33 0.37 0.33 0.37 0.33 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.36 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.37 0.39 0.39 0.37 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.3		O2 112 114 136 107 125 137 136 137 136 137	Si02	46.70	48.36	47.57	48.45	47.27	46.85	47.86	46.63	46.21	47.10	
2023 6.55 4.97 6.28 5.56 6.04 4.82 5.16 6.34 6.14 5.42 Ba pm 644 6 0 13.79 14.33 15.21 14.17 14.34 13.81 14.43 13.75 14.37 13.93 15.91 14.17 14.34 13.81 14.43 14.35 15.21 14.17 14.34 13.81 11.46 17.35 0.50 0.5			rio2	1.22	1.41	1.36	1.07	1.35	0.66	0.78	1.32	1.30	0.92	Ag ppm <1
			1203	6.55	4.97	6.28	5.56	6.04	4.82	5.16	6.34	6.14	5.42	Ba ppm 644 641
			60	13.79	14.23	12.78	14.49	14.12	15.70	15.34	15.70	14.03	15.70	Ce ppm 40.1 39.4
qc 1438 143 151 1441 1436 1436 1431 1431 151 170 152 170 153 103 1032 C C D 9 170 13 201 1.92 1.162 1.147 1.126 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.14 1.136 1.136 1.14 1.136 1.136 1.14 1.136 1.136 1.14 1.136 1.136 1.14 1.136 1.14 1.16 1.16 1.131 1.16 1.14 1.16 1.14 1.16	q.6 1438 1443 1381 1444 1438 1443 152 1417 143 153 152 1417 143 153 152 1441 1438 1443 153 153 156 1136 1136 1133 1068 1136 1133 1058 1092 C5 pm 159 141 2 20 0.46 0.37 0.49 0.45 0.36 0.36 0.48 0.37 0.09 159 141 2 31 6.79 7.03 6.00 0.06 0.09 0.09 0.09 0.09 2 149 1436 141 2 136 141 2 141<	α 1438 1443 1438 1444 1438 1444 1435 151 1417 141 151 151 151 151 151 153 156 156 153 156 153 156 153 156 153 156 153 156 153 156 153 156 157 157 151 151 151 153 153 153 153 151 <t< td=""><td>InO</td><td>0.44</td><td>0.72</td><td>0.37</td><td>0.62</td><td>0.56</td><td>0.95</td><td>0.78</td><td>0.45</td><td>0.47</td><td>0.80</td><td>Co ppm 8.2 9.2 8.</td></t<>	InO	0.44	0.72	0.37	0.62	0.56	0.95	0.78	0.45	0.47	0.80	Co ppm 8.2 9.2 8.
O 1092 11.47 11.26 11.16 12.33 10.06 10.03 10.02 Coppm 103 11.41 2 AC0 1092 11.47 11.26 11.16 12.3 10.06 11.35 10.9 11.41 10.35 10.9 11.4 2 10.9 11.4 2 10.9 11.4 2 10.9 10.1 9 11.4 2 10.9 10.9 11.4 2 10.9 10.9 11.4 2 10.9 10.9 11.4 2 10.9 10.9 10.9 11.4 2 10.9 11.4 11.2 10.9 11.4 10.9 10.9 11.4 10.9 10.9 11.4 10.9 11.4 10.9 11.4 10.9 11.4 11.4 11.4 11.4 10.9 10.9 10.9 10.9 11.4 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 11.4 10.9 10.9 10.9 <th< td=""><td>add 11.06 11.36 11.16 11.36 11.16 11.36</td><td></td><td>1g0</td><td>14.88</td><td>14.53</td><td>15.21</td><td>14.17</td><td>14.34</td><td>13.81</td><td>14.44</td><td>14.98</td><td>14.49</td><td>14.26</td><td>Cr ppm 151 170 12(</td></th<>	add 11.06 11.36 11.16 11.36 11.16 11.36		1g0	14.88	14.53	15.21	14.17	14.34	13.81	14.44	14.98	14.49	14.26	Cr ppm 151 170 12(
Alt 1.50 1.53 1.04 1.57 1.50 1.43 1.14 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.42 0.44 0.45 <th0.45< th=""> 0.45 0.45 <th0< td=""><td>ato 150 153<td>00 150 033 138 104 1,37 130 136 0,45 0,44 0,5 0,5 0,5 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,6 0,44 0,6 0,6 0,6 0,6 0,6 0,6 0,</td><td>CaO</td><td>10.92</td><td>11.62</td><td>11.47</td><td>11.26</td><td>11.16</td><td>12.33</td><td>10.68</td><td>11.06</td><td>10.98</td><td>10.92</td><td>Cs ppm 1.89 1.41 2</td></td></th0<></th0.45<>	ato 150 153 <td>00 150 033 138 104 1,37 130 136 0,45 0,44 0,5 0,5 0,5 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,6 0,44 0,6 0,6 0,6 0,6 0,6 0,6 0,</td> <td>CaO</td> <td>10.92</td> <td>11.62</td> <td>11.47</td> <td>11.26</td> <td>11.16</td> <td>12.33</td> <td>10.68</td> <td>11.06</td> <td>10.98</td> <td>10.92</td> <td>Cs ppm 1.89 1.41 2</td>	00 150 033 138 104 1,37 130 136 0,45 0,44 0,5 0,5 0,5 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,44 0,6 0,6 0,44 0,6 0,6 0,6 0,6 0,6 0,6 0,	CaO	10.92	11.62	11.47	11.26	11.16	12.33	10.68	11.06	10.98	10.92	Cs ppm 1.89 1.41 2
20 0.46 0.37 0.49 0.44 0.45 0.46 0	20 0.46 0.37 0.49 0.46 0.45 <th0< td=""><td>0 0.46 0.37 0.49 0.49 0.37 0.49 0.37 0.49 0.37 0.49 0.36 0.49 0.36 0.49 0.36 0.49 0.36 0.49 0.36 0.49 0.36 0.49 0.36 <th0.36< th=""> 0.3</th0.36<></td><td>Na20</td><td>1.50</td><td>0.93</td><td>1.38</td><td>1.04</td><td>1.37</td><td>1.05</td><td>1.20</td><td>1.48</td><td>1.35</td><td>1.19</td><td>Cu ppm 10 9 11</td></th0<>	0 0.46 0.37 0.49 0.49 0.37 0.49 0.37 0.49 0.37 0.49 0.36 0.49 0.36 0.49 0.36 0.49 0.36 0.49 0.36 0.49 0.36 0.49 0.36 <th0.36< th=""> 0.3</th0.36<>	Na20	1.50	0.93	1.38	1.04	1.37	1.05	1.20	1.48	1.35	1.19	Cu ppm 10 9 11
N 0.79 7.00 0.00 7.00 0.00 7.00 0.	N 0.79 7.39 0.50 7.09 0.30 0.31 2.31 3	N 0.79 7.09 0.70 0	120	0.46	0.37	0.49	0.46	0.45	06.0	0.00	6.67	0.48 A 87	0.40	Dv nom 2.72 2.14 2.9 2
Main Main <th< td=""><td>Math Math <t< td=""><td>No 0.00 0</td><td>ISI</td><td>6.79</td><td>7.03</td><td>6.90 1.07</td><td>7.05</td><td>06.90</td><td>0.84</td><td>5 880</td><td>1.07</td><td>0.02</td><td>0.93</td><td>Er ppm 1.46 1.36 1.8 1.5</td></t<></td></th<>	Math Math <t< td=""><td>No 0.00 0</td><td>ISI</td><td>6.79</td><td>7.03</td><td>6.90 1.07</td><td>7.05</td><td>06.90</td><td>0.84</td><td>5 880</td><td>1.07</td><td>0.02</td><td>0.93</td><td>Er ppm 1.46 1.36 1.8 1.5</td></t<>	No 0.00 0	ISI	6.79	7.03	6.90 1.07	7.05	06.90	0.84	5 880	1.07	0.02	0.93	Er ppm 1.46 1.36 1.8 1.5
II 0.00 0	T1 0.00 <th0< td=""><td></td><td>Fe+3</td><td>0.09</td><td>0.12</td><td>0.03</td><td>0.02</td><td>0.06</td><td>0.20</td><td>0.17</td><td>0.27</td><td>0.12</td><td>0.21</td><td>Eu ppm 0.85 0.86 0.9 0.8</td></th0<>		Fe+3	0.09	0.12	0.03	0.02	0.06	0.20	0.17	0.27	0.12	0.21	Eu ppm 0.85 0.86 0.9 0.8
mr.r 8.00 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 8.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 <th< td=""><td>mint 800 800 800 800 800 64 pm 257 31 28 Mi 0.00 0.00 0.00 0.00 0.00 0.00 115 115 116 0.00 0.00 145 0.14 0.15 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.15 0.14 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.16 0.14 <th0< td=""><td>m.T 810 800<td>Ē</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>Ga ppm 15.6 15.3 16 15.</td></td></th0<></td></th<>	mint 800 800 800 800 800 64 pm 257 31 28 Mi 0.00 0.00 0.00 0.00 0.00 0.00 115 115 116 0.00 0.00 145 0.14 0.15 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.15 0.14 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.16 0.14 <th0< td=""><td>m.T 810 800<td>Ē</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>Ga ppm 15.6 15.3 16 15.</td></td></th0<>	m.T 810 800 <td>Ē</td> <td>0.00</td> <td>Ga ppm 15.6 15.3 16 15.</td>	Ē	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Ga ppm 15.6 15.3 16 15.
AI 0.00 0.01 0	AI 0.00 0.01 <th0< td=""><td>41 0.00 <th0< td=""><td>T-mu</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>Gd ppm 0.8 2.57 3.1 2.83</td></th0<></td></th0<>	41 0.00 <th0< td=""><td>T-mu</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>8.00</td><td>Gd ppm 0.8 2.57 3.1 2.83</td></th0<>	T-mu	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	Gd ppm 0.8 2.57 3.1 2.83
Fre+3 0.03 0.72 0.77 0.88 0.60 115 116 0.14 0.10 123 214 0.60 234 225 27 245 Ma 3.23 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.24 225 27 245 Ma 0.13 0.15 0.13 0.12 0.13 0.07 1.15 0.34 0.44 0.06 0.33 27 245 27 245 Ma 0.05 0.09 0.07 0.12 0.11 0.13 0.14 0.10 13 23 <th23< th=""> 23 23</th23<>	Fe+3 0.03 0.72 0.77 0.85 0.84 0.60 115 116 0.95 0.87 160 0.14 0.10 123 234 225 27 245 Ma 3.13	Fer-3 0.03 0.72 0.77 0.88 0.84 0.60 11.5 11.6 0.19 0.10 11.8 11.6 0.14 0.10 12.8 22.5 27 24.5 Ma 0.13 0.15 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 23.14 55.9 55.7 24.5 Ma 0.05 0.09 0.05 0.03 0.05 0.03 0.03 0.03 0.03 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.7 55.9 55.7 24.5 <td>R</td> <td>0.00</td> <td>Hf ppm 3.2 3.3 3.5 3.4</td>	R	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Hf ppm 3.2 3.3 3.5 3.4
II 0.13 0.15 0.15 0.12 0.15 0.15 0.12 0.15 0.13 0.13 0.14 0.10 Lapm 234 225 27 245 Ma 3.23 3.13 3.29 3.07 3.12 3.06 3.13 3.19 3.19 3.10 7.90 7.90 5.9 <td>II 0.13 0.15 0.16 0.16 0.10 ND DD <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></td> <td>II 0.13 0.15 0.15 0.12 0.13 0.03 0.14 0.10 La ppm 234 225 27 245 Ma 3.23 3.13 3.29 3.07 3.12 3.06 3.13 3.19 3.10 Rb ppm 56.9 62 59 23 31 Pr+2 0.35 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 70 7 ppm 31 3</td> <td>Fe+3</td> <td>0.03</td> <td>0.72</td> <td>0.77</td> <td>0.85</td> <td>0.84</td> <td>0.60</td> <td>1.15</td> <td>1.16</td> <td>0.95</td> <td>0.87</td> <td>Ho ppm 0.56 0.44 0.6 0.51</td>	II 0.13 0.15 0.16 0.16 0.10 ND DD DD <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<>	II 0.13 0.15 0.15 0.12 0.13 0.03 0.14 0.10 La ppm 234 225 27 245 Ma 3.23 3.13 3.29 3.07 3.12 3.06 3.13 3.19 3.10 Rb ppm 56.9 62 59 23 31 Pr+2 0.35 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 70 7 ppm 31 3	Fe+3	0.03	0.72	0.77	0.85	0.84	0.60	1.15	1.16	0.95	0.87	Ho ppm 0.56 0.44 0.6 0.51
Mg 3.13 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.10 Rb pm 587 55.9 52 59 RH-2 0.55 0.88 0.75 0.88 0.77 3.12 3.16 3.13 3.19 3.19 3.10 Rb pm 587 55.9 52 59 Mn 0.05 0.06 0.07 0.12 0.11 0.05 0.06 0.01 7 7 727 128 13 75 16 144 C 5.00 5.00 0.00 0.00 0.00 0.00 0.00 7 7 727 128 15 165 Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7 7 7 127 128 15 165 Mn 0.00 0.00 0.00 0.00 0.00 0.00 7 7 7 127 128 15 165 165	Mg 3.13 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.10 7 <th< td=""><td>Mg 3.13 3.19 3.19 3.19 3.19 3.10</td><td>=</td><td>0.13</td><td>0.15</td><td>0.15</td><td>0.12</td><td>0.15</td><td>0.07</td><td>1.15</td><td>1.16</td><td>0.14</td><td>0.10</td><td>La pom 23.4 22.5 27 24.5</td></th<>	Mg 3.13 3.19 3.19 3.19 3.19 3.10	=	0.13	0.15	0.15	0.12	0.15	0.07	1.15	1.16	0.14	0.10	La pom 23.4 22.5 27 24.5
(m) 0.55 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.80 0.00 <th< td=""><td>(m) 0.55 0.89 0.75 0.89 0.82 1.15 0.54 0.45 0.66 0.83 57 pm 0.11 223 297 310 An 0.05 0.09 0.05 0.09 0.00 0.00 0.00 0.00 20 9 133 237 317 312 516 144 An 0.05 0.00 0.00 0.00 0.00 0.00 0.00 133 237 126 164 144 An 0.00 0.00 0.00 0.00 0.00 0.00 0.00 133 127 128 125 16 144 An 0.00 0.00 0.00 0.00 0.00 0.00 100 171 15 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 174 171 17 17<!--</td--><td>(m) 0.55 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.80 0.00 <th< td=""><td>Лg</td><td>3.23</td><td>3.15</td><td>3.29</td><td>3.07</td><td>3.12</td><td>3.06</td><td>3.13</td><td>3.19</td><td>3.19</td><td>3.10</td><td>Rb ppm 58.7 55.9 62 59</td></th<></td></td></th<>	(m) 0.55 0.89 0.75 0.89 0.82 1.15 0.54 0.45 0.66 0.83 57 pm 0.11 223 297 310 An 0.05 0.09 0.05 0.09 0.00 0.00 0.00 0.00 20 9 133 237 317 312 516 144 An 0.05 0.00 0.00 0.00 0.00 0.00 0.00 133 237 126 164 144 An 0.00 0.00 0.00 0.00 0.00 0.00 0.00 133 127 128 125 16 144 An 0.00 0.00 0.00 0.00 0.00 0.00 100 171 15 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 174 171 17 17 </td <td>(m) 0.55 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.80 0.00 <th< td=""><td>Лg</td><td>3.23</td><td>3.15</td><td>3.29</td><td>3.07</td><td>3.12</td><td>3.06</td><td>3.13</td><td>3.19</td><td>3.19</td><td>3.10</td><td>Rb ppm 58.7 55.9 62 59</td></th<></td>	(m) 0.55 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.89 0.75 0.80 0.00 <th< td=""><td>Лg</td><td>3.23</td><td>3.15</td><td>3.29</td><td>3.07</td><td>3.12</td><td>3.06</td><td>3.13</td><td>3.19</td><td>3.19</td><td>3.10</td><td>Rb ppm 58.7 55.9 62 59</td></th<>	Лg	3.23	3.15	3.29	3.07	3.12	3.06	3.13	3.19	3.19	3.10	Rb ppm 58.7 55.9 62 59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Fe+2	0.55	0.89	0.75	0.89	0.82	1.15	0.54	0.45	0.66	0.83	Sr nnm 301 323 297 310 2
$m_{\rm eff}$ 0.00	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Image: Column	Min	0.05	0.09	0.05	0.08	0.07	0.12	0.10	0.05	0.06	0.10	Y ppm 14.3 12.5 16 14.4
Matrix Matri Matri Matri <td>0.00 0.01 <th< td=""><td>0.00 0.01 <t< td=""><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>5.00</td><td>5.00</td><td>5.00</td><td>5.00</td><td>5.00</td><td>Zr ppm 127 122 128 125 1</td></t<></td></th<></td>	0.00 0.01 0.01 <th< td=""><td>0.00 0.01 <t< td=""><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>5.00</td><td>5.00</td><td>5.00</td><td>5.00</td><td>5.00</td><td>Zr ppm 127 122 128 125 1</td></t<></td></th<>	0.00 0.01 0.01 <t< td=""><td></td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>5.00</td><td>5.00</td><td>5.00</td><td>5.00</td><td>5.00</td><td>Zr ppm 127 122 128 125 1</td></t<>		0.00	0.00	0.00	0.00	0.00	5.00	5.00	5.00	5.00	5.00	Zr ppm 127 122 128 125 1
R+2 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <th< td=""><td>R+2 0.00 0.01 <th< td=""><td>R+2 0.00 0.01 0.01 0.01 <th< td=""><td>Ma</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>Nb ppm 6.9 6.8 7.8 7.3 7</td></th<></td></th<></td></th<>	R+2 0.00 0.01 <th< td=""><td>R+2 0.00 0.01 0.01 0.01 <th< td=""><td>Ma</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>Nb ppm 6.9 6.8 7.8 7.3 7</td></th<></td></th<>	R+2 0.00 0.01 0.01 0.01 <th< td=""><td>Ma</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>Nb ppm 6.9 6.8 7.8 7.3 7</td></th<>	Ma	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Nb ppm 6.9 6.8 7.8 7.3 7
Mn 0.00 0	Mn 0.00 0	Mr 0.00 0.01	Fe+2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Th ppm 10.8 10.7 15 16.5 13
Ca 1.70 1.81 1.78 1.75 1.75 1.96 1.66 1.69 1.74 1.71 Zn Zn 65 72 73 73 73 73 73<	Ca 1.70 1.81 1.78 1.75 1.96 1.66 1.69 1.74 1.71 CZn ppm 62 66 65 60.5 Na 0.30 0.19 0.22 0.25 0.26 0.04 0.27 0.30 0.34 0.31 Ni ppm 6 10 10 96 mm-B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 V ppm 71 70 75 72.5 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 70 75 72.5 72.5 Na 0.12 0.07 0.01 0.00 0.00 0.00 0.00 70 0.53 36 307 K 0.08 0.07 0.09 0.09 0.09 0.09 0.09 0.06 0.66 56 65 65 65 65 65 65 65 65 65 65	Ca 1.70 1.81 1.78 1.75 1.75 1.96 1.66 1.69 1.74 1.71 CI CI <thci< th=""> CI CI CI<</thci<>	Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Pb ppm 16 15 18 16.5 1
Na 0.30 0.19 0.22 0.25 0.26 0.04 0.27 0.30 0.34 0.31 Ni pm 9 10 10 9.6 m-B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 7.5 72.5	Na 0.30 0.19 0.22 0.25 0.26 0.04 0.27 0.30 0.34 0.31 Ni ppm 9 10 10 9.6 mu-B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 V ppm 71 70 75 72.5 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 70 75 72.5 Na 0.12 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.55 72.5 72.5 72.5 72.5 73.6 307 200 200 0.00 0.00 0.00 0.56 0.55 73.6 307 307 307 307 307 307 307 303 307 303 307 303 307 303 303 303	Va 0.30 0.19 0.22 0.25 0.26 0.04 0.27 0.30 0.34 0.31 Ni ppm 9 10 10 9.6 m-B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 V ppm 71 70 75 75.5 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 71 70 75 72.5 Ca 0.01 0.01 0.00 0.00 0.00 0.00 0.00 71 70 7 75 72.5 Xa 0.12 0.07 0.01 0.00 0.00 0.00 0.01 0.56 0.55 Xa 0.14 0.24 0.13 0.27 0.00 0.00 0.01 0.01 0.53 0.53 36 307 Ka 0.03 0.01 0.04 0.27 0.00 0.00 0.01 0.01 0.01	Ca	1.70	1.81	1.78	1.75	1.75	1.96	1.66	1.69	1.74	1.71	Zn ppm 62 56 65 60.5 5
Im-B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 7.1 7.0 7.5 7.2.5 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.0 7.5 7.2.5 Na 0.12 0.07 0.17 0.04 0.13 0.27 0.00 0.00 0.00 7.0 7.5 7.2.5 Na 0.12 0.07 0.11 0.12 0.29 0.1 0.5 0.6 0.55 0.5 0.55 0.5 0.55 0.5 0.55 0.5 0.55 0.5 0.55 0.7 0.55 0.7 0.50 0.50 0.50 0.55 0.7 0.55 0.7 0.07 0.09 0.07 0.07 0.09 0.07 0.07 0.09 0.07 0.09 0.07 0.19 0.21 0.36 0.7 mm-A 0.21 0.21 0.23 0.33 0.07 0.19	Imm-B 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 70 75 72.5 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 70 75 72.5 Na 0.12 0.07 0.17 0.04 0.13 0.27 0.00 0.00 0.00 70 0.55 73.6 307 K 0.12 0.07 0.07 0.07 0.09 0.07 0.07 0.09 0.07 0.65 0.6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na	0.30	0.19	0.22	0.25	0.26	0.04	0.27	0.30	0.34	0.31	Ni ppm 9 10 10 9.6 1
Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Ca 0.00 0.01 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	um-B	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	V ppm 71 70 75 72.5
Na 0.12 0.07 0.17 0.04 0.13 0.27 0.00 0.11 0.12 0.29 U ppm 2.83 2.53 3.6 3.07 K 0.08 0.07 0.09 0.09 0.08 0.07 0.09 0.09 0.00 0.07 W ppm 4 10 3 6.5 mA 0.21 0.14 0.26 0.13 0.22 0.33 0.07 0.19 0.21 0.36 V ppm 1 2 1 1.5 mCat 15.21 15.14 15.26 15.13 15.22 15.33 15.07 15.19 15.21 15.36 Sn ppm 1 2 1 1.5 mCat 3.50 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 M 0 ppm 1 2 3 2.5	Na 0.12 0.07 0.17 0.04 0.13 0.27 0.00 0.11 0.12 0.29 U ppm< 2.83 2.53 3.6 3.07 K 0.08 0.07 0.09 0.09 0.09 0.09 0.09 0.07 0.09 0.09 0.07 0.07 0.09 0.09 0.07 3.6 J 4 10 3 6.5 mn-A 0.21 0.14 0.26 0.13 0.22 0.33 0.07 0.19 0.21 0.36 W PPm 4 10 3 6.5 mn-cat 15.21 15.13 15.53 15.07 15.19 15.21 15.36 Sn Ppm 1 1 1 1 1 15 1 1.5 1 1.5 15 15 15 1 1.5 1 1.5 1 1.5 1 1.5 3 2.5 3 3 2.5 nn-Cat 15.	Na 0.12 0.07 0.17 0.04 0.13 0.27 0.00 0.11 0.12 0.29 U ppm< 2.83 2.53 3.6 3.07 K 0.08 0.07 0.09 0.09 0.09 0.09 0.07 0.07 0.09 0.09 0.07 0.07 0.09 0.09 0.07 0.01 0.21 0.36 W Ppm< 4	č	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Tappm 0.4 0.5 0.6 0.55
M. 0.08 0.07 0.09 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.01 0.13 0.05 0.01 0.13 0.13 0.51 0.11 0.36 W Ppm 4 10 3 6.5 mn-A 0.21 0.21 0.33 0.07 0.19 0.21 0.36 0.1 1	K 0.08 0.07 0.09 0.08 0.09 0.08 0.09 0.09 0.08 0.01 0.19 0.21 0.36 W Ppm 4 10 3 6.5 mn-A 0.21 0.14 0.26 0.13 0.22 0.33 0.07 0.19 0.21 0.36 N Ppm 4 10 3 6.5 mn-Cat 15.21 15.13 15.22 15.33 15.07 15.19 15.21 15.36 Sn Ppm 1 2 1 15 mn-Cat 15.21 15.50 23.00 23.	n 0.08 0.07 0.09 0.08 0.09 0.08 0.09 0.08 0.09 0.09 0.08 0.01 0.19 0.21 0.36 V ppm 4 10 3 6.5 mn-A 0.21 0.13 0.22 0.33 0.07 0.19 0.21 0.36 V ppm 4 10 3 6.5 mn-A 0.21 15.11 15.22 15.33 15.07 15.19 15.21 15.36 7 7 1 15 m-Cat 15.21 15.50 15.52 15.33 15.07 15.19 15.21 15.36 7 7 1 15 mr-Cat 15.21 15.50 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 7 1 2 1 1.5 mr-O 23.00 23.00 23.00 23.00 23.00 <	Na	0.12	0.07	0.17	0.04	0.13	0.27	0.00	0.11	0.12	0.29	U ppm 2.83 2.53 3.6 3.07
mm	m 0.21 0.14 0.20 0.12 0.22 0.22 0.22 0.22 0.21 0.11 1.516 1.511 1.526 50 1.5 <th1.5< th=""> <th1.5< th=""> 1.5</th1.5<></th1.5<>	m 0.21 0.14 0.20 0.12 0.22 0.23 0.21 0.11 1.5 <t< td=""><td>X</td><td>0.08</td><td>0.07</td><td>0.09</td><td>0.09</td><td>0.08</td><td>0.07</td><td>0.07</td><td>0.10</td><td>10.01</td><td>0.076</td><td>W ppm 4 10 3 6.5</td></t<>	X	0.08	0.07	0.09	0.09	0.08	0.07	0.07	0.10	10.01	0.076	W ppm 4 10 3 6.5
m	mi-0 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 1 2 3 2.5 Pr ppm 4.81 4.06 4.1 4.09	m-0 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 1 2 3 2.5 Pr ppm 4.81 4.06 4.1 4.09 Nd ppm 15.3 14 17 15.5 Nd ppm 15.3 14 17 15.5	m-Cat	15.21	15.14	0.40	15.13	15.22	15.33	15.07	15.19	15.21	15.36	Sn ppm 1 2 1 1.5
	Pr ppm 4.81 4.06 4.1 4.09	Pr ppm 4.81 4.06 4.1 4.09 Nd ppm 15.3 14 17 15.5	0-11	23.00	23.00	23.00	23.00	23.00	23.00	23.00	23.00	23.00	23.00	Moppm 1 2 3 2.5
Nd ppm 15.3 14 17 15.5 Sm ppm 2.88 2.4 2.9 2.66	Sm ppm 2.88 2.4 2.9 2.66													Tb ppm 0.32 0.37 0.5 0.42
Nd ppm 15.3 14 17 15.5 Sm ppm 2.88 2.4 2.9 2.66 Tb ppm 0.32 0.37 0.5 0.42	Sm ppm 2.88 2.4 2.9 2.66 Tb ppm 0.32 0.37 0.5 0.42	Tb ppm 0.32 0.37 0.5 0.42												Tm ppm 0.25 0.21 0.3 0.23
Nd ppm 15.3 14 17 15.5 Sm ppm 2.88 2.4 2.9 2.66 Tb ppm 0.32 0.37 0.5 0.42 Tm ppm 0.25 0.21 0.3 0.23	Sm ppm 2.88 2.4 2.9 2.66 Tb ppm 0.32 0.37 0.5 0.42 Tm ppm 0.25 0.21 0.3 0.23	Tb ppm 0.32 0.37 0.5 0.42 Tm ppm 0.25 0.21 0.3 0.23												Yb ppm 1.63 1.43 1.9 1.65
Nd ppm 15.3 14 17 15.5 Sm ppm 2.88 2.4 2.9 2.66 Tb ppm 0.32 0.37 0.5 0.42 Tm ppm 0.25 0.21 0.3 0.23 Yb ppm 1.63 1.43 1.9 1.66	Sm ppm 2.88 2.4 2.9 2.66 Tb ppm 0.32 0.37 0.5 0.42 Tm ppm 0.25 0.21 0.3 0.23 Yb ppm 1.63 1.43 1.9 1.66	Tb ppm 0.32 0.37 0.5 0.42 Tm ppm 0.25 0.21 0.3 0.22 Yb ppm 1.63 1.43 1.9 1.66												Lu ppm 0.27 0.23 0.3 60.5
Nd ppm 15.3 14 17 15. Sm ppm 2.88 2.4 2.9 2.6 Tb ppm 0.32 0.37 0.5 0.4 Tm ppm 0.25 0.21 0.3 0.2 Yb ppm 1.63 1.43 1.9 1.6 Lu ppm 0.27 0.23 0.3 60.	Sm ppm 2.88 2.4 2.9 2.6 Tb ppm 0.32 0.37 0.5 0.4 Tm ppm 0.25 0.21 0.3 0.2 Yb ppm 1.63 1.43 1.9 1.6 Lu ppm 0.27 0.23 0.3 60.	Tb ppm 0.32 0.37 0.5 0.4 Tm ppm 0.25 0.21 0.3 0.2 Yb ppm 1.63 1.43 1.9 1.6 Lu ppm 0.27 0.23 0.3 60.												TI ppm <0.5 <5 <5 129

جدول ۲- نتايج آناليز شيميايى عناصر فرعى و نادر خاكى منطقه (بەروش ICP-MS)

جدول ٣- نتايج أناليز نقطهاى أمفيبول (بر حسب درصد وزنى)

نقط ای آمفیب ول های این توده ماگمایی از نوع کلسیک و ترکیب آن هورنبلند منیزیم دار است (۵- A و B). بیوتیت شکل دار تا نیمه شکل دار با رنگ قهوایی تا قهوایی سوخته در مقاطع دیده می شود، اندازه بیوتیت ها ۰/۲ تا ۱/۵ میلی متر است.

بر اساس دادههای آنالیز نقطهای بیوتیتهای این توده، اولیه (ماگمایی) و از نوع منیزیمدار است (شکل ۵- C و D). علاوه بر کانیهای فرومنیزین، کانیهای فرعی شامل آپاتیت و تورمالین بوده و سریسیت، کلسیت، کلریت و اپیدوت بهعنوان کانیهای دگرسانی در توده نفوذی وش نیز حضور دارند. رگچههای اپیدوتی بخشهایی از توده را قطع کرده است. کانیهای اپاک در این نفوذی بر اساس دادههای آنالیز نقطهای مگنتیت بوده و معمولاً همراه کانیهای بیوتیت و آمفیبول است. حضور مگنتیت در توده نفوذی نشانگر فوگاسیته بالای اکسیژن است (Sack et al., 1980).

حضور مقادیر زیادی انکلاوهای گرد و بیضوی با منشأ آذرین، دارای ترکیب دیوریت و تا حدی مونزودیوریت است که از ویژگیهای مهم این نفوذی است. انکلاوها بیشتر در فازهای مافیکتر، هم در بخشهای حاشیهای و هم در مرکز توده مشاهده میشوند و اندازه آنها بین ۱۰ میلیمتر تا ۴۰ سانتیمتر متغیر است اما ابعاد ۱۰ تا ۲۰ سانتیمتر فراونی بیشتری دارند. شکل آنها از میکند، ولی بیشتر به شکلهای تقریباً بیضوی دیده میشوند. اندازه انکلاوهای توده وش متفاوت مدی کند و به صورت مزوکراتیک تا ملانوکراتیک، میشوند (شکل ۳–۲).

V.plg.1 V.plg.3 Sample V.plg.2 V.plg.4 V.plg.5 V.plg.6 Rime core SiO₂ 59.632 58.450 61.053 57.279 62.562 62.914 0.000 0.031 0.000 0.000 0.016 0.053 TiO₂ 22.276 Al₂O₃ 24.247 25.144 23.427 26.121 23.860 0.259 0.219 0.143 0.133 0.058 FeO 0.193 MgO 0.000 0.040 0.000 0.076 0.008 0.000 CaO 6.768 8 067 5 731 8 7 3 0 4 974 3 9 5 5 9 4 5 0 Na₂O 7 636 6 8 7 9 8 2 4 9 6 4 6 0 8 622 0.486 0.334 0.337 0.266 0.352 0.193 K₂O 99.028 98.899 99.164 98.94 99.125 100.527 Total 2.690 2.639 2.744 2.592 2.759 2.814 Si 1.288 1.337 1.240 1.392 1.239 Al 1.173 0.000 0.001 0.000 0.000 0.001 0.002 Ti Fe⁺² 0.010 0.008 0.005 0.007 0.005 0.002 Mg 0.000 0.003 0.000 0.005 0.001 0.000 0.390 0.276 0.423 0.235 0.190 Ca 0.327 0.820 0.668 0.602 0.719 0.567 0.737 Na 0.028 0.019 0.019 0.015 0.020 0.011 K Cations 5.011 4.999 5.003 5.001 4.997 5.012 0.60 0.71 0.74 0.80 Ab 0.65 0.56 0.27 0.02 0.19 An 0.32 0.039 0.42 0.24 0.03 0.02 0.01 Or جدول ۵- نتایج حاصل از آنالیز نقطهای بیوتیتها در توده وش V.Bio.1 V.Bio.2 V.Bio.3 V.Bio.4 V.Bio.5 Sample

جدول ۴- نتایج آنالیز نقطهای پلاژیوکلازها در گرانودیوریتها

SiO ₂	35.719	36.184	36.085	37.476	36.130
TiO ₂	3.846	3.791	3.714	3.688	3.718
Al ₂ O ₃	13.150	13.277	13.302	13.605	13.331
FeO	19.916	19.528	19.675	18.487	19.455
MnO	0.442	0.386	0.403	0.386	0.388
MgO	12.094	12.553	12.457	11.811	12.354
CaO	0.023	0.067	0.026	0.164	0.097
Na ₂ O	0.093	0.118	0.108	0.587	0.083
K ₂ O	10.530	10.580	10.613	10.088	10.227
Total	95.81	96.64	96.53	96.42	95.96
Si	5.269	5.282	5.279	5.423	5.300
Al ^{IV}	2.284	2.283	2.292	2.318	2.303
Al ^{VI}	0.000	0.000	0.000	0.000	0.000
Ti	0.427	0.416	0.409	0.401	0.410
Fe ⁺³	0.000	0.000	0.000	0.000	0.000
Fe ⁺²	2.457	2.384	2.407	2.237	2.387
Mn	0.055	0.048	0.050	0.047	0.048
Mg	2.659	2.732	2.717	2.548	2.702
F	0.000	0.158	0.153	0.126	0.182
Ca	0.004	0.010	0.004	0.025	0.015
Na	0.027	0.033	0.031	0.165	0.024
K	1.982	1.970	1.981	1.862	1.914
Cations	15.164	15.158	15.170	15.026	15.103
0	22	22	22	22	22

جدول ۶- نتایج آنالیز نقطهای مگنتیت به صورت اکسیدی

Point	1	2	3	4	5
SiO ₂	0.044	0.091	0.053	0.071	0.077
TiO ₂	0.174	0.18	0.238	0.203	0.218
V_2O_5	0.422	0.466	0.598	0.489	0.428
Al ₂ O ₃	0.107	0.164	0.13	0.059	0.043
Cr ₂ O ₃	0.059	0.086	0.056	0.067	0.059
MnO	0.131	0.165	0.168	0.105	0.08
MgO	0.016	0	0.013	0	0
FeO	31.041	31.029	31.05	30.978	31.037
Fe ₂ O ₃	67.132	66.842	66.39	66.614	66.85
Total	99.127	99.023	98.69	98.586	98.792

آمفیبول با فراوانی بیشتر از بیوتیت به صورت شکل دار تا نیمه شکل دار و با رنگ سبز زیتونی حضور دارد (شکل ۳- D). بر اساس داده های آنالیز

شکل ۳- تصاویر میکروسکوپی (XPL) سنگهای توده نفوذی وش؛ A) ماکل پلیسنتتیک در پلاژیوکلاز (Plg) که منطقهبندی نیز نشان میدهد، B) ماکل دوتایی در آمفیبول، C) آپاتیت (PPL)، D) همنشینی کانیهای آمفیبول (Amp)، بیوتیت (Bio)، آپاتیت (Apt) و ارتوکلاز (Or)، E) بافت سلولی اسفنجی در پلاژیوکلاز، F) مرز بین گرانیتویید (سمت راست تصویر) و انکلاوهای مافیک

شکل ۵- تعیین نوع آمفیبول ها بر اساس ترکیب شیمیایی؛ آمفیبول ها در قلمرو کلسیک (A) و از نوع منیزیوهورنبلند (B) هستند (Leake et al., 1997)

ادامه شکل ۵- تعیین نوع بیوتیتها بر اساس ترکیب شیمیایی در نمودارهای ردهبندی انواع بیوتیت از Nachit و همکاران (۱۹۸۵)، ایـن کانی ماگمایی (C) و از Foster (۱۹۶۰) از نوع منیزیمدار (D) است. (علائم مربوط به نمودار C: A- بیوتیتهای اولیـه، B- بیوتیتهای دگرسان و - بیوتیتهای بازتبلور یافته)

ژئوشيمى

طبقەبندى ژئوشيميايى

مقـدار متوسـط SiO₂، K2O، Al2O₃، SiO₂، CaO، K2O، Al2O₃، Na2O، Na2O، Na2O و Mg≠ و ACNK، K2O/Na2O در تــوده نفــوذی وش، بـهترتيـب برابـر ۶۳/۲۵، ۶۳/۲۵، ۱۴/۶۲، ۲/۳۲، ۵/۱۳، ۳/۹۱، ۱۰/۶۰، ۷/۱۱، ۱۶/۷۶ و ۴۶/۷۶ است.

سنگهای توده نفوذی مطالعه شده علاوه بر

نام گذاری مدال، بر اساس نمودار ترکیب شیمیایی

نام گذاری شدهاند (Cox et al., 1979) و دارای

20 **(B)** 18 16 14 Na20+K20 12 10 Alkaline 8 6 4 Subalkaline 2 a da contra da contr Û 35 40 45 50 55 60 65 70 75 80 85 SiO2

شکل ۶- طبقهبندی ژئوشیمیایی و نامگذاری سنگها با استفاده از A) نمودار مجموع آلکالی در مقابل سیلیس (Cox et al., 1979)، B) نمودار SiO₂ در برابرNa₂O+K₂O، نماد مربع توپر: نمونههای توده اصلی، لوزی توپر: نمونههای انکلاو

شکل ۶- طبقهبندی ژئوشیمیایی و نام گذاری سنگها با استفاده از C) نمودار مثلثی Irvine and Baragar, 1971) AFM) و C) موقعیت نمونهها در نمودار A/CNK در مقابل A/NK (Maniar and Picooli, 1989)؛ نماد مربع توپر: نمونههای توده اصلی، لوزی توپر: نمونههای انکلاو

شکل ۷- نمودارهای پترولوژی Furnes et al., 1996) Y-SiO₂ (B و Chappell and White, 1992) Na₂O-K₂O (A)؛ نمادها مانند شکل ۶

ادامه شکل ۲- نمودارهای پترولوژی C) نمودار Martin, 1993) Sr/Y-Y) و D) نمودار پتروژنز (Patino, 1993)؛ نمادها مانند شکل ۶

ژئوشیمی عناصر کمیاب

و روندی خطی به موازات خط یک را برای هر دو گروه از عناصر نشان میدهد (شکل ۸– C و D). در نمودار بههنجار شده نسبت به کندریت، غنییشدگی از LREEs و تهییشدگی از HFSE بیانگر ماگماتیسم متاآلومین نوع I قوسهای آتشفشانی است. Parada و همکاران (۱۹۹۹) بیان میکنند که غنیشدگی و فراوانی LREEs میتواند به علت ذوب بخشی کم این سنگها و یا منشأ نسبتاً غنی از عناصر قلیایی مرتبط با مناطق فرورانش باشد.

منشأگیری توده نفوذی وش از منبع پوسته زیرین است

تعیین محیط تکتونیکی Batchelor و Bowden (۱۹۸۵)، بـــر پایــه تغییـرات عناصـر اصلی نمـودار R1-R2 را بـهمنظـور تفکیـک محـیطهـای تکتـونیکی گرانیتوییـدها ارائـه نمودنــد. در ایـــن نمــودار (شـــکل ۹- ۸) گرانیتوییـدهای منطقـه در گـروه گرانیـتهـای پـیش گرانیتوییـدهای منطقـه در گـروه گرانیـتهـای پـیش از برخـورد (pre-plate collision) (محـدوده ۲) قـرار گرفتـهانـد. نمونـههـای گرانیتوییـد وش در نمـودار گرفتـهانـد. نمونـههـای گرانیتوییـد وش در نمـودار ای Y+Nb در مقابـل B (VAG) قـرار گرفتـهانـد (شکل ۹- B). برای بررسی الگوهای REEs معمولاً از نمودار به and Mc به کندریت (Sun and Mc) Donough, 1989) استفاده مي شود. اين نمودار (شكل A-A) نشانگر روندی یکنواخت، مسطح و بهطور کلی الگوی تفریق نیافته در توزیع HREEs را عرضه می کند، در حالی که LREEs غنی شدگی و تفریق یافتگی نشان $-1/\Lambda\Lambda$ مسی دھند (La/Yb)_N=V/9T-1T/1V ولسی Eu .(Gd/Yb)_N=۱/۰۹ أنومـالى منفـى نسـبتاً ضعیف تا کمی مثبت دارد (Eu/Eu^{*}=•/۶۹-۱/۱۶). جدایش فلدسیار از مذاب فلسیک موجب پیدایش آنومالی منفی Eu مے شود (Sun and Mc Donough) (1989. اما حضور آمفيبول مي تواند موجب بي هنجاري مثبت در سنگهای حدواسط شود (Henderson) (1984. در شکل A – B تغییرات عناصر ناسازگار نسبت به فراوانی آن ها در کندریت (Thompson, 1982) بههنجار شده است و آنومالی منفی و مشخصی از Nb و Sr، همچنین آنومالی مثبتی از La و Th را نشان میدهد که خـاص گرانیتوییـدهای کالـکآلکـالن قـوس است و می تواند با مذاب حاصل از پوسته زیرین سازگار باشد (Harris and Inger, 1992). الگوهای REEs عناصر ناسازگار به هنجار شده نسبت به پوسته زیرین (Taylor and Mclennan, 1985) تأییدی بر احتمال

شکل ۸- نمودارهای فراوانی؛ A) عناصر نادر خاکی به کندریت (Sun and Mc Donough, 1989)، B) عناصـر ناسـازگار (Thompson, 1982) بـه کندریت، C) عناصر نادر خـاکی و D) عناصـر ناسـازگار بـه پوسـته زيـرين (Taylor and Mclennan, 1985) در سـنگـهـای گرانيتوييـدی وش؛ نمادها مانند شکل ۶

1000

100

10

1

1

10

Th/Yb

100

La/Yb

داده و در محدوده قوس آتشفشان قرار گرفتهاند. گرانیتوییدهای منطقه وش در نمودار Th/Ta-Yb از Liegeois و Black (۲۰۰۰) گویای تشکیل این توده در محدوده حاشیه فعال قارهای است (شکل ۹– D).

n

8

16

ادامه شکل ۹- نمودارهای تعیین محیط تکتونیکی: C) نمودار Condie, 2002) La/Yb-Th/Yb) و C) نمودار Liegeois and Black, Th/Ta-Yb) و C) نمودار ۹- نمودار (2000؛ نمادها مانند شکل ۶

1000

بحث و نتيجه گيرى

32

40

مهم ترین مدل های منشأیی برای تشکیل ماگماهای فلسیک در یک محیط قوس آتشفشانی شامل دو گروه الف) فرآينـدهـاي Bacon and Druitt, 1988) AFC) و ب) ذوب بخشی یوسته زیرین بر اثر گرمای حاصل از ماگمای مافیک با منشأ عمیقتر یا گوشتهای است (Guffanti et al., 1996). در این منطقه به علت حجـیم بودن توده گرانیتوییدی وش، بالا بودن مقدار SiO₂ در آن و سن بیشتر نفوذیهای گابرویی همراه و کمتر بودن حجم آنها در منطقه، همچنین غنیشدگی از عناصر ناسازگاری مانند Rb ،Li و Th، سازگار با مدل اول یا تشکیل در طی فرآیندهای AFC نیست. با توجه به تشابه بسیار زیاد توزیع REEها و عناصر ناسازگار به یوسته زیرین، یذیرش مدل دوم برای این تودهنفوذی قابل قبول تر است. با توجه به یافتههای این یژوهش، منشأ ماگمای مادر می تواند یک متابازالت تا متاتونالیت یا معادل دگرگونی آن (آمفیبولیت) باشد که با ترکیب

بوسته زیرین شباهت زیادی دارد. همچنین پایینبودن Al₂O₃ (کمتر از ۱۵ درصد وزنی)، عدم بیهنجاری شدید از Eu و الگوی تخت عناصر نادر به علاوه پایین بودن فشار حاکم در زمان جایگزینی مےتواند نشانگر نبود گارنت به عنوان باقی مانده ذوب در منشأ باشد. گرانیتویید وش بر اساس مطالعات پتروگرافی و ژئوشیمی میتواند حاصل ذوب بخشی پروتولیتهای پوسته زیرین ایجاد شده و طبی بالا آمدن، با پوسته بالایی آلایش پیدا کرده باشد. انکلاوهای مافیک در آن شاهدی بر حضور ماگمای بازالتی با منشأ عمیقتر است که در پوسته زیرین جایگزین شده و به احتمال زیاد، حرارت برای ذوب بخشی پوسته زیرین را فراهم ساخته است. ماگمای فلسیک تولیدی با این ماگمای بازالتی اختلاط و ماگمای حد واسط دیوریتی را به وجود آورده است. با توجه به محیط تکتونوماگمایی قوس آتشفشانی قارهای برای این منطقه و تداوم حضور مذابهای مافیک یس از فرآیند فرورانش در کرتاسه بالایی، ماگمای همچنین نسبتهای بالای La/Yb-Th/Yb (بین ۱۰ تا ۱۰۰) در شکل ۹– C، بیانگر از تعلق این توده به ماگماهای فلسیک قوس قارهایی است (Condie, 2002)، هرچند نمونههای انکلاو رفتاری متفاوت از خود نشان

حاصله طبیعی است که ویژگیهای مناطق فرورانشی را از خود نشان دهد. در واقع ادامه فرآیندهای ماگمایی پس از زیرراندگی پوسته اقیانوسی عربی به زیـر بلـوک لوت باعث تشکیل تودههای نفوذی همچون وش در منطقه مورد مطالعه شده است. این مطالعات منطبق با نتایج Pourhosseini (۱۹۸۱) که معتقد به یک مدل ساده AFC برای کل تودههای نفوذی در اطراف شهر نطنز است، نبوده اما با مطالعات هنرمند (۱۳۹۰) و Haschke و همکاران (۲۰۱۰) همسو بوده و آنها را تأیید می کند و نشانگر تشابه بسیار زیاد نفوذی وش با مجموعه های نفوذی فلسیک در اطراف شهر نطنز است. پهنه زاگرس در نتیجه ناپدید شدن اقیانوس نئوتتیس بين اوراسيا و صفحه عربستان ايجاد شده است (Ahmadian et al., 2009) و زمان برخورد بسیار بحث برانگیز است و از کرتاسهبالایی ,Berberian and King) (Berberian and Berberian, 1981) تا ميوسنن (Berberian) یا از ابتدای پلیوسن (Stocklin, 1968) در منابع مختلف ذكر شده است، با اين حال بيشترين حمايت از ائوسن بالایی تا الیگوسن است (برای مثال 2005 Agard et al., 2005 و Ballato et al., 2010). به عقيده Agard و همكاران (۲۰۱۱) تکامل کوهزاد زاگرس در سه دوره زمانی شامل زمان کرتاسهمیانی تا بالایی با بههم ریختگی و آشفتگی مشخص فرآیندهای زیرراندگی و جفتشدگیهای

منابع

- امین الرعایایی یمینی، م.، کنعانیان، ع. و احمدیان، ج. (۱۳۸۶) بررسی ژئوشیمی و خاستگاه زمین ساختی سنگ های آتشفشانی تتماج. مجله علوم پایه دانشگاه تهران (۱)۳۳: ۲۷ – ۳۸.
- باباخانی، ع.، خلعتبری جعفـری، م. و علائـی مهابـادی، س. (۱۳۷۲) نقشـه زمـینشناسـی ۱/۱۰۰۰۰ چهـارگوش نظنـز. سـازمان زمینشناسی و اکتشافات معدنی کشور، تهران.

درویش زاده، ع. (۱۳۶۳) اصول آتشفشان شناسی. انتشارات دانشگاه تهران، تهران.

شیریان، ف. (۱۳۷۵) پتروژنزگرانیتوئیدها و انکلاوهای کوه هیمند (شمالغرب نطنز). پایاننامه کارشناسی ارشد، دانشگاه اصفهان، اصفهان، ایران.

قربانی، م. (۱۳۸۲) مبانی آتشفشانشناسی با نگرشی بر آتشفشانهای ایران. انتشارات آرین زمین، تهران.

مکانیکی داخل صفحهای، زمان پالئوسن - ائوسن کندی ماگماتیسم کمانی و توسعه کشش در پوسته بالایی و از الیگوسن به بعد گسترش برخورد و شکل گیری کنونی کمربند ارومیه - دختر است. Clemens و همکاران (۲۰۱۱) در محیطهای ماگمایی قوس آتشفشانی به نقش حرارتی ماگماهای مافیک در ذوببخشی پوسته زیرین و تشکیل ماگمای گرانیتی اشاره کرده که همراه با اختلاط ماگمایی است و ویژگی ماگماهای ماگمای با اختلاط ماگمایی است و ویژگی ماگماهای مافیک نشان میدهد. با توجه به شواهد ژئوشیمیایی، ماگمای مادر توده نفوذی وش از دو منشأ ماگمای مافیک گوشتهای و ماگمای منتج از ذوب پوسته است. این فرآیند طی فعالیتهای ماگماتیسم در حین فرورانش و ایفاق افتاده است.

بنابراین، توده نفوذی وش با ترکیب گرانودیوریت تا تونالیت، از نظر ماهیت ساب آلکالن، کالک آلکالن و متاآلومین بوده و از نوع I است. با توجه به نمودارهای تکتونوماگمایی، این نفوذی در یک حاشیه فعال قارهای در شرایط زیرراندگی اقیانوس – قارهای در پهنه ارومیه – دختر تشکیل شده است. این شرایط با مدل زیرراندگی پوسته اقیانوسی نئوتتیس بهزیر ایران مرکزی و ادامه فرآیندهای ماگمایی بعدی مرتبط با آن در کمربند آتشفشانی ارومیه – دختر تطابق دارد. کنعانیان، ع.، امین الرعایایی یمینی، م. و احمدیان، ج. (۱۳۸۷) کانیشناسی و ژئوشیمی ایزوتوپهای پایدار سـنگهای آتشفشانی دگرسان شده جنوبخاوری کاشان. مجله بلورشناسی و کانیشناسی ایران (۳)۱۶: ۴۴۳ – ۴۵۸.

معینوزیری، ح. (۱۳۷۵) دیباچهای بر ماگماتیسم در ایران. انتشارات دانشگاه تربیتمعلم، تهران.

- نصراصفهانی، ع. و احمدی، م. (۱۳۸۷) سنگشناسی گدازههای شوشونیتی در جنوب روستای عشین (شرق اصفهان). مجله علومپایه دانشگاه آزاد اسلامی، ۶۹: ۶۹ – ۹۸.
- نصراصفهانی، ع. و وهابیمقدم، ب. (۱۳۸۹) موقعیت تکتونیکی و ماگمایی رخنمون های فلسیک الیگوسن در جنوب اردستان (شمال شرق اصفهان). مجله پترولوژی (۱۲): ۹۵ – ۱۰۸.
- هنرمند، م.، مؤید، م.، جهانگیری، ۱.، احمدیان، ج. و بهادران، ن. (۱۳۹۰) بررسی ویژگیهای ژئوشیمیایی مجموعه نفوذی نطنز، شمال اصفهان. مجله پترولوژی (۱)۱: ۶۵ – ۸۸.
- Agard, P., Omrani, J., Jolivet, L. and Moutherau, F. (2005) Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences 94: 401-19.
- Agard, P., Omrani, J., Jolivet, L., Whitech, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B. and Wortel, R. (2011) Zagros orogeny: a subduction dominated process. Geology Magazine 1: 1-34.
- Ahmadian, J., Hasckke, M., Mc Donald, I., Regelous, M., Ghorbani, M. R., Hashem Emami, M., Murata, M. (2009) High magmatic flux during Alpine-Himalayan collision: constraints from the Kal-e-Kafi complex, central Iran. Geological Society of America 121(5): 857-868.
- Bacon, C. R. and Druitt, T. H. (1988) Compositional evolution of the zoned cal-calkaline magma chamber of Mount Mazama, Craterr Lake, Oregon. Contributions to Mineralogy and Petrology 98: 224-256.
- Ballato, P., Mulch, A., Landgraf, A., Strecker, M. R., Dalconi, M. C., Friedrich, A. and Tabatabaei, S. H. (2010) Middle to late Miocene Middle Eastern elimate from stable oxygen and carbon isotope data, southern Alborz mountains, N Iran. Earth and Planetary Science Letters 300: 125-38.
- Batchelor, R. A. and Bowden, P. (1985) Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chemical Geology 48: 43-55.
- Berberian, F. and Berberian, M. (1981) Tectono-plutonic episodes in Iran. In: Gupta, H. K. and Delany, F. M. (Eds.): Zagros-Hindu Kush-Himalaya Geodynamic Evolution. American Geophysical Union, Washington 3: 5-32.
- Berberian, M. and King, G. C. P. (1981) Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18: 1764-6.
- Chappell, B. W. and White, A. J. R. (1992) I and S-Type granite in the Lachlan Fold-Be1t: transition of the royal society of Edinburgh. Earth sciences 83:1-26.
- Clemens, J. D., Stevens, G. and Farina, F. (2011) The enigmatic sources of I- type granites: the peritectic connexion. Lithos 126:174-181.
- Condie, K. C. (2002) Geochemical changes in basalts and andesites across the Archean-Proterozooic boundary: Identification and significance. Lithos 23:1-18.
- Cox, K. G., Bell, J. D. and Pankhurst, R. J. (1979) The interpretation of igneous rocks. Allen and Unwin, London.
- Droop, G. T. R. (1987) A general equation Fe⁺³ concentration in ferromagnesian silicates and oxides from microprobe analysis using stoichiometric criteria. Mineralogical Magazine 51: 431-435.
- Foster, M. D. (1960) Interpretation of the composition of trioctahedral micas: U.S. Geological Survey,

Professional Paper 354 B: 11-49.

- Furnes, H., El-Sayed, M. M., Khalil, S. O. and Hassanen, M. A. (1996) Pan-African magmatism in the Wadi-El-Imra district, Central Desert, Egypt: Geochemistry and tectonic environment. Journal of the Geological Society 153: 705-718.
- Guffanti, M., Clynne, M. A. and Muffler, L. J. P. (1996) Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and constraints on basalt influx to the lower crust. Journal of Geophysical Research 101: 3001-3013.
- Harris, N. B. W. and Inger, S. (1992) Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology 110: 46-56.
- Haschke, M., Ahmadian, J., Murata, M. and McDonald, I. (2010) Copper mineralization prevented by arcroot delamination during Alpine-Himalayan collision in central Iran. Economic Geology 105: 855-865.
- Henderson, P. (1984) Rare earth element geochemistry. Elsevier, Oxford, New York.
- Irvine, T. N. and Baragar, W. R. A. (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8: 523-548.
- Leak, B. E., Gilber, M. Ch., Grice, J. D., Hawthrnic., F. C., Kato, A., Kisch, H. j., Kirvichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Marcsh, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C, Ungaretti, L., Whittaker, E. J. W. and Youzhi, G. (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles on the International Mineralogical association, commission on new minerals and minerals name. Canadian Mineralogist 35: 219-246.
- Liegeois, J. P. and Black, R. (1987) Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforas. In: Fitton, J. G. and Upton, B. G. J. (Eds): Alkaline igneous rocks. Geological Society London, Special Publication 30: 381-401.
- Maniar, P. D. and Piccoli, P. M. (1989) Tectonic discrimination of granitoids. Geological Society of American Bulletin 101: 635-643.
- Martin, H. (1993) The Archaean grey gneisses and the genesis of the continental crust. In: Condie, K. C. (Ed.): The Achaean Crustal Evolution. Elsevier, Amsterdam 205-259.
- Nachit, H., Razafimahefa, N., Stussi, J. M. and Caron, J. P. (1985) Composition chimique des biotites et typologie magmatique des granitoids. C. R. Academic Sciences Paris, Ser. 2 301: 813-818.
- Nasr-Esfahani, A. k. and shoJaei, B. (2011) Petrogenesis of Oligo-Miocene granitoid intrusive in west Natanz, centeral part of Uroma- Dokhtar magmatic belt, NE Isfahan, Iran. Mineralogical Magazine, 3 (75): 1526.
- Parada, M. A., Nystrom J. O. and Levi, B. (1999) Multiple source for the Coastal Batholith of Central Chile: geochemical a Sr-Nd isotopic evidence and tectonic implication. Lithos 46: 505-521.
- Patino, D. A. E. (1993) Titanium substitution in biotite: an empirical model with applications to thermometry, O₂ and H₂O barometries and consequences for biotite stability. Chemical Geology 108: 133-162.
- Pearce, J. A., Harris, N. B. W. and Tindle, A. G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25: 956-983.
- Pe-Piper, G., Piper, D. J. and Matarangas, D. (2002) Regional implications of geochemistry and style of emplacement of Miocene I-type diorite and granite., Delos, Cyclades, Greece. Lithos 60: 47-66.
- Pourhosseini, F, (1981) Petrogenesis of Iranian Plutons, a study of the Natanz and Bazman Intrusive complexes. Ph. D. Thesis, Cambridge University. Geological Survey of Iran.

- Sack, R. O., Carmchael, L. S. E., Rivers, M. and Chiroso, M. S. (1980) Ferric-Ferrous equilibrium in natural silicates liquids at 1 bar. Contribution to Mineralogy and Petrology 75: 369-376.
- Shahabpour, J. (2005) Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences 24: 405-417.
- Stocklin, J. (1968) Structural history and tectonics of Iran, a review. American Association of Petroleum Geologist Bulletin 52(7): 1229-1258.
- Sun, S. S. and McDonough, W. F. (1989) Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D. and Norry, M. J. (Eds.): Magmatism in ocean basins. Geological Society Special Publication 42: 313-345.
- Taylor, S. R. and McLennan, S. M. (1985) The continental crust: its composition and evolution. Blackwell, Oxford.
- Thompson, A. B. (1982) Magmatic of the British Tertiary volcanic province. Scottish Journal of Geology 18: 50-107.

Petrology and genesis of Vash granitoid NW Natanz (Isfahan)

Ali Khan Nasr Esfahani * and Behafarin Shojaei

Department of Geology, Faculty of Sciences, Islamic Azad University, Khorasgan Branch, Isfahan, Iran

Abstract

The Vash granitoid is located in NW Natanz and is a part of Uromieh-Dokhtar magmatic belt in Central Iran. This pluton is probably of Oligo-Miocene age and is the result of extensive magmatism which occurred during and post of the Alpine Orogeny. The composition of the pluton ranges from granodiorite to tonalite. The main minerals are quartz, plagioclase, alkali-feldspar and ferromagnesian minerals are biotite and amphibole. It contains a number of dioritic enclaves with different sizes. Based on geochemical studies, the Vash granitiod is similar to those of the subalkaline, calcalkaline series, metaluminous, and displays typical features of magnesian I-type granites. The pluton is characterized by enrichment in large ion lithophile elements (LILE) such as Rb, Ba, K, Ce and depletion in high field strength elements (HFSE) such as Y, Nb and Zr. The chondrite normalized REE patterns are characterized by moderate to high LREE enrichment [(La/Yb)_N=7.93-13.17] and unfractionated HREE [(Gd/Yb)_N=1.09 to 1.88]. Granodiorites show least fractionated in HREE and a weak negative Eu anomalies (Eu/Eu^{*}=0.69-1.16). The studied magma was likely derived from primary magma in the lower crust originated by partial meling of crustal protoliths as well as basaltic magmas formed by partial melting of mantle wedges. The Vash granitoid displays mineralogical and geochemical characteristics typical of volcanic arc granites related to an active continental margin. Tectonic setting of Vash granitoid may be syn-subduction magmatism or post-collisional magmatism due to extensional phases after collision of Lut microcontinent and Arabic plate.

Key words: Vash, Natanz, Granitoid, I-type, Oligo-Miocen, Calc-alkaline