زمینشیمی و سنگشناسی توالی گوشتهای در افیولیتهای نائین

نوشته: محمد رهگشای* ، جواد مهدی پور قاضی* ، هادی شفائی مقدم** * دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران ** دانشکده علوم زمین، دانشگاه علوم پایه دامغان، دامغان، ایران تاریخ دریافت: ۱۳۸۶/۰۸/۲۱ تاریخ پذیرش:۱۳۸۶/۱۲/۰۴

چکیدہ

توالی گوشته ای مجموعه افیولیتی نائین علاوه بر پریدوتیت ها (هارزبورژیت های Cpxدار، لرزولیت ها و به طور محلی ورلیت ها و دونیت ها) از گابروهای پگماتیتی، لکه های گابرویی، دایک های گابرویی- دیابازی، پیروکسنیتی و وبستریتی تشکیل شده است. مطالعات سنگ شناسی و زمین شیمیایی، بیشتر پریدوتیت های این منطقه را هارزبورژیت های Cpxدار معرفی کرده است که دارای اسپینل های غنی از آلومینیم، با عدد کروم ۴۱/۵۵–۱۶/۱۲ = ۲۲ است که در دمای حدود C[°] ۱۰۰۰ به تعادل رسیده اند. گابروهای پگماتیتی به صورت انبان های کوچک درون پریدوتیت ها دیده شده که دارای Cpx و در مان که دارای مینلوهای غنی از آلومینیم، با عدد کروم ۴۱/۵۵–۱۶/۱۲ = ۲۶ پلاژیو کلاز دگر شکل شده هستند. دایک های گابرویی و دیابازی به طور عموم رودنگیتی شده اند و درون پریدوتیت ها بدون حاشیه سرد نفوذ کرده اند. این دایک ها از نظر زمین شیمیایی با گدازه های بالشی (پیلولاواها) و میکروگابروهای توالی پوسته ای هم منشأ بوده اما درصدهای متفاوت ذوب بخشی را نشان میدهند. همچنین بر اساس زمین شیمی سنگ های مافیک و پریدوتیت ها، میتوان افیولیت نائین را مرتبط به گسترش یک حوضه پشت که دا دانست.

كليد واژهها: توالى گوشتهاى، پريدوتيت، ذوب بخشى، حوضه پشت كمان، افيوليت نائين

مقدمه

توالی گوشتهای مهمترین و عمدهترین سنگشناسی موجود در هر مجموعه افیولیتی بوده که شناخت این توالی میتواند اطلاعات ارزشمندی را از ایجاد، مهاجرت و تحول ماده مذاب ارائه دهد. علاوه بر این، تعیین تیپ افیولیتها نیز ارتباط تنگاتنگی با شناخت مجموعه گوشتهای دارد. از سوی دیگر، درجه غنی شدگی و یا تهی شدگی توالی گوشتهای (از عناصر ناساز گار) نیز میتواند اطلاعات جامعی در مورد مذاب ایجاد شده ارائه دهد.

مجموعه افیولیتی نائین در شمال باختر بلوک لوت، بخشی از کمربند افیولیتی نائین – بافت است که در امتداد گسل امتداد لغز نائین– بافت رخنمون دارد. زمین شناسی این منطقه توسط (Davoudzadeh (1972) بررسی شده است. تاکنون بحثهاي متعددي درباره محيط پيدايش اين مجموعه افيوليتي مطرح شده كه بيشتر مطالعات بر منشأ گرفتن كمربند افيوليتي نائين- بافت از يك پوسته اقيانوسي باريك وكمژرفا تأكيد كردهاند(Berberian & King, 1981; Arvin & Robinson,;1996) وكمژرفا تأكيد Arvin & Shokri, 1997; Ghazi & Hassanipak, 2000; Babaie et al., 2001). از سوى دیگر، مطالعات جدید، این افیولیتها (نائین – بافت) را مرتبط با گسترش یک حوضه پشت كماني بين بلوك لوت وحاشيه فعال ايران مركزي (زون سنندج- سيرجان) دانستهاند (Shahabpour,2004; Agard et al., 2006).این مجموعه متشکل از ورقههای روی هم رانده شدهای از پریدوتیت– سرپانتینت بوده که در خاور توسط واحدهای رسوبی ترشیری و در باختر توسط واحدهای آتشفشانی ترشیری احاطه شدهاند (Davoudzadeh, 1972). مرز واحدها در این مجموعه، زمینساختی است و رانده شدن مکرر واحدهای افیولیتی بر روی یکدیگر در اثر عملکرد گسل های راندگی اصلی، ساختارهای دوپلکسی را بهوجود آورده است (شکل۱). پریدوتیتهای این مجموعه افیولیتی، متشکل از هارزبورژیتهای دارای کلینوپیروکسن و لرزولیتها است که بهطورعموم سرپانتینی شدهاند. توالی پوستهای در این مجموعه افیولیتی نازک بوده و متشکل از گدازههای بالشی، دیابازها، گابروهای همسانگرد به همراه . آهک^یهای پلاژیک و چرت است. WWW.SID.IV

روش مطالعه

پس از مطالعات صحرایی، از حدود ۷۰ نمونه سنگی مقطع نازک و صیقلی برای مطالعات سنگنگاری و تجزیههای شیمیایی کانیایی تهیه شده است. همهٔ تجزیههای کانیایی در دانشگاه نانسی فرانسه با دستگاه الکترون میکروپ Cameca Sx-50 با ولتاژ ۱۰Ke۷ و جریان۱۲ nA صورت گرفته است. تجزیه شیمیایی حدود ۳۰ نمونه سنگی به روش ICP-Ms و CP-AES در آزمایشگاه زمین شیمی داتشگاه لوئی پاستور استراسبورگ فرانسه (Centre de Geochimie de La Surface, Strasbourg) انجام شده است.

معرفی واحدهای توالی گوشتهای ۱- پریدوتیتها

۱-۱- توصیف و سنگنگاری: پریدوتیتها مهم ترین واحد توالی گوشته ای هستند که در این مجموعه افیولیتی به طور عموم سرپانتینیتی و کمتر میلونیتی شده اند. عمده ترین سنگهای پریدوتیتی این مجموعه از هارزبورژیت های کلینو پیرو کسن دار و لرزولیت تشکیل شده اند.

- هارزبورژیتهای کلینوپیروکسندار: در این سنگها، بلورهای دگرشکل شدهٔ اولیوین در میان شبکههای سرپانتین به صورت بافت شبکهای (Mesh Texture) احاطه شدهاند. پورفیروکلاستهای Opx به طور بخشی باستیتی شده (شکل ۲) و علاوه بر این، دارای تیغههای برونرانشی (اکسولوشن) CPX هستند که در راستای نوارهای شکنجی(kink band) موجود در این پوروفیروکلاستها خم شدهاند. کلینوپیروکسن دارند. حضور کروم کلریت و همچنین کمتر از یک درصد دانههای سولفید (به طور عمده کالکوپیریت) از دیگر مشخصههای این پریدوتیتها است. - لرزولیتها: سرپانتینی شدن کمتری را متحمل شدهاند و در عوض دگرسانی تالکی رانشان می دهند. این سنگها دارای پورفیروکلاستها و نئوبلاستهای اولیوین (حاصل

از آنها دارای میانبارهایی از اولیوین هستند. سه نوع لرزولیت بر اساس کانیهای فرعی تشخیص داده شده است: ۱- آمفیبول لرزولیتها که دارای نئوبلاستهای آمفیبول به صورت فاز بین دانهای هستند. این نوع لرزولیتها، بیگانه سنگهای پریدو تیتی هستند که در تودههای گابرویی یافت می شوند. ۲- اسپینل لرزولیتها دارای کروم اسپینل به صورت بلورهای خود شکل با رنگ قهوه ای روشن (با ترکیب پیکو تیت) (شکل ۲). ۳- پلاژیو کلاز - اسپینل لرزولیتها که در این مورد، تصور بر این است که پریدو تیتهای ژرف پلاژیو کلازدار محصولات آلودگی یک پریدو تیت باقیمانده بدون پلاژیو کلاز، توسط مذابهای بازالتی است (Cannat,1997).

- ورلیتها: ورلیتها به صورت دایکهای تزریقی با حاشیه و دیواره واضح به طور محدود دیده می شوند. این دایکهای ورلیتی در هارزبورژیتهای به شدت تهی شده تزریق شدهاند. این ورلیتها دارای پورفیرو کلاستهای اولیوین، Cpx و کمتر از ۵٪ Opx هستند. از ویژگیهای مهم این مجموعه، میلونیتی شدن و تبلور دوباره دینامیکی شدید است. پورفیرو کلاستهای اولیوین و Cpx به شدت د گر شکل بوده و نوار شکنجی نشان می دهند.

- دونیتها: به طور محدود در منطقه دیده میشوند که بهشدت سرپانتینی شده (فاقد باستیت) بوده و دارای بلورهای خود شکل کرومیت هستند. پیوستگاه سه گانه (Triple Junction) با زاویه ۱۲۰ درجه در بین ریختنما(pseudomorph) های اولیوین دیده می شود. 1-۲-زمین شیمی کانیایی: مقدار NiO اولیوین ها در طیفی بین (wt/۰۵۷۳ و ۰/۰۵۴ و عدد منیزیم آنها [//Mg+Fe²⁺]Mg#[100(Mg)/(Mg+Fe²⁺) است و در محدوده تركيبي فورستريت قرار مي گيرند. ارتوپيروكسن ها بهطورعموم انستاتيت با تركيب Wo₃₂En₈₇₉Fs تا Wo₃₂En₈₇₉Fs و دارای مقدار متغیر Wo₃₂En₈₇₉Fs تا Wo_{0.79}En₉₀₄Fs و₂O₃ و Xt) Al₂O₃ او الالا) (wt) Cr₂O₃ او Xt) Al₂O₃ المستند. كلينو پيرو كسن ها در این سنگها بهطورعموم دیوپسید با ترکیبWo_{49.8}En₄₆.6Fs بوده و مقدار Al₂O₃ و Cr₂O₃ آنها به ترتيب بين (٪۳۲/۲-۴/۹۴ ((/wt) ۱/۰۰۶-۱/۰۶ در تغییر است. اسپینل.های موجود در این پریدوتیت.ها به دو دسته خیلی غنی از Al با تركيب [(Mg_{0.74} Fe_{0.26})(Cr_{0.31} Al_{1.64} Fe_{0.04})₂O₄] و غنى از Al با تركيب $[(Mg_{0.61} Fe_{0.39}) (Cr_{0.79} Al_{1.12} Fe_{0.33})_2 O_4] - [(Mg_{0.67} Fe_{0.33}) (Cr_{0.66} Al_{1.32} FeO_{0.03})_2 O_4]$ تقسیم میشوند. در این اسپینلها، با افزایش مقدار عدد کروم# Cr مقدار TiO₂نیز افزایش می یابد. مقدار Cr₂O₃ بین (./۳۴/۰۴– ۱۴/۹۲و مقدار _{Al2}O₃ بین (٪۳۲/۱ (wt) است. عدد کروم # Cr در این اسپینل ها بین ۱۶/۱۲ –۴۱/۵۵ ٪ در تغییر است.

۱–۳– معاسبات دماسنجی: برای بهدست آوردن دمای تعادلی برای پریدوتیتهای نائین از روشهای (Taylor (1998) و Kohler (1990) و Brey & Kohler (1990) و Sachtleben & Seck (1981) و در فشار 1981) مد (1998) که در آن ترکیب کانیهای CPX-CPX در فشار ۱/۵GPa مد نظر است، دمای بهدست آمده بین C ۸۶۴ تا C ۱۰۸۳ در تغییر است. در روش (1990) Brey & Kohler (1990) که بر اساس ترکیب کانیهای OPX-CPX صورت گرفته دمایی در حدود C ۲۹۴ تا C ۸۷۲ بهدست آمده است. برای روش ماین دمایی در مایی بهدست آمده برابر C یک کانیهای Opi Opx, محاسبه می شود)میانگین دمایی بهدست آمده برابر C

۱–۴– زمین شیمی کل سنگ: پریدو تیت های توالی گوشته ای نائین با مقادیر بالای MgO و مقادیر پایین ₂O₃,TiO مشخص می شوند. عدد Mg این پریدو تیت ها بین ۸۰/۹۱–۷۵/۱۶ در تغییر است. در الگوی REE ها (بهنجار شده نسبت به کندریت) برای پریدو تیت ها، تهی شدگی در تمام REE ها با شب منفی از HREE به LREE دیده می شود. بالاتر بودن مقادیر HREE ها WWW.SILL.

در برخی از نمونه ها با بالا بودن مقدار CPX در این سنگ ها در ارتباط است، Cpx مستعدترین کانی در پذیرش عناصر HREE است. در الگوی چند عنصری بهنجار شده به گوشته اولیه بی هنجاری های مثبتی در Sr ,Rb ,U ,Sr ,Rb های Pb ,U ,Sr ,Rb دیده می تواند در ارتباط با فرایند متاسوماتیسم توسط سیال های مشتق شده از صفحه فرورانش شده و یا در اثر پدیده سرپانتینیتی شدن باشد (شکل ۳۵).

۲- پیروکسنیتها و وبستریتها

- توصیف و سنگنگاری: پیرو کسنیتها و وبستریتها به صورت دایک، عدسی و یا تجمعهای کوچکی در پریدو تیتهای توالی گوشته ای مجموعه افیولیتی نائین دیده می شوند. این واحدهای سنگی در برخی موارد بافت انباشته ای (کومولایی) (شکل ۲۲) و در برخی موارد دیگر بافت میلونیتی نشان می دهند. بلورهای اولیوین در این سنگها به دو صورت دیده می شوند: ۱- به صورت دانه های بزرگ و گردشده در اولیوین و بستریتها. در این مورد، شکل دانه های کلینوپیرو کسن و ار توپیرو کسن از فضای حفظ شده بین بلورهای اولیوین پیروی می کند، یعنی به صورت فاز اینتر کومولوسی در فضای بین اولیوینها تشکیل شده اند. پیرو کسنها آثاری از دگر شکلی پلاستیک (به صورت خاموشی موجی، نوارشکنجی و غیره) را نشان نمی دهند. ۲- به شکل بلورهای دانه ریز و گردشده که به صورت چادو کریست (Oikocryst)، یا ار توپیرو کسن دیده می شوند. به نظر می رسد که این تیپ از پیرو کسنیتها در ادامه از توپیرو کسن دیده می شوند. به نظر می رسد که این تیپ از پیرو کسنیته دا دا دامه افزایش حجم مذاب ایجاد کننده آلودگی های ماگمایی در پریدو تیتهای توالی گوشته ای ایجاد شده اند.

- **زمین شیمی کانیایی:** اولیوین ها در این سنگ ها به طور عموم ترکیب فورستریتی (۸۵–۸۵ درصد) و مقادیر NiOکمتر از (/wt ۱۸ ۰۴۷۸ دارند.

- زمین شیمی کل سنگ: مقادیر Al₂O₃, CaO در پیرو کسنیت ها پایین، و به طور میانگین به ترتیب (٪ wt) ۱۰ و ۲/۴۲ است. مقادیر این اکسیدها در اولیوین وبستریت ها نسبت به پیرو کسنیت ها بالاتر بوده و به ترتیب (٪ ۱۳(wt 9/۳۶ است. عدد منیزیم این سنگ ها در طیفی بین ۷۰–۷۲ ٪ در تغییر است. الگوی بهنجار شده REE های این سنگ ها تهی شدگی در تمام این عناصر را نشان می دهند. نسبت (۲/۰۵ ما در طیفی بین ۲۰/۰–۱/۴ متغیر است. غنی شدگی در R, R, P, U, Ba و تهی شدگی در طیفی این Ti, Nd, Nh, Th است (شکل ۳ ۳).

3- آلودگیهای گابرویی

- توصيف و سنگ نگاری: اگر ماده مذاب نتواند راه خود را در پريدوتيت ها به صورت شکستگی های مويين (hydraulic fracturing) باز نمايد، در پريدوتيت ها منتشر شده و توليد آلودگی می کند. اين پديده به طورعموم به سبب ژرفای زياد (در نتيجه فشار زياد) پريدوتيت ها اتفاق می افتد (Nicolas, 1989). اين سنگ ها در مشاهدات صحرايی با گسترش نوارها و دانه های پلاژيو کلازی در پريدوتيت ها شناخته شده اند (شکل ۲۲). کلينوپيرو کسن ها در آلودگی های گابرويی شامل دو نوع اند : - کلينوپيرو کسن هايی که دارای رخ های خميده و يا نوار شکنجی بوده و می تواند نشانگر تراوش ماگمايی به صورت خمير مذاب باشند. ۲- کلينوپيرو کسن هايی که فاقد نوار شکنجی بوده و حاصل تبلور دوباره در اثر دگر گونی گوشته ای اند. بيشتر پلاژيو کلاز ها در اثر تأثير محلول ها دگر سان شده اند (شکل های ۲D,F) و اما در بيشتر پلاژيو کلاز های سالم دوقلو های مکانيکی ديده می شوند که نشان دهنده آن است

اللي المحافظ محافظ المحافظ محافظ محافظ محافظ محافظ المحافظ محافظ محماضح محافظ محافظ محافظ محاف محافظ محماض محافض محافظ محافظ محمحافظ م

که پریدوتیتها در هنگام تزریق این آلودگیهای گابرویی دگرشکلی پلاستیکی نیز متحمل میشدهاند(Nicolas,1989; Jin et al.,1994).

– **زمین شیمی کانیایی:** اولیوین ها در سنگها، ترکیبی بین ۸۲–۸۵ ٪ فورستریت و NiO حدود (/wt (wt (wt) - ۱۰/۵۹ دارند. کلینوپیروکسن ها نیز دارای ترکیب [Wo_{47.54} En_{46.99} Fs_{5.47}-Wo_{41.57} En _{50.65} Fs_{7.78}]هستند. مقدار Al₂O₃ و Cr₂O₃ این کلینوپیروکسن ها به ترتیب (/۳۷۶ (wt (wt) - ۱/۰۶ و(/۳۲۰ (wt)) در تغییر است.

- **زمین شیمی کل سنگ:** مقدار عدد Mg این سنگها تغییراتی بین ۶۷/۹ و ۶۷/۴ ٪ را نشان میدهند . نسبت (La_(N)/Yb, برای این سنگها در حدود ۵/۰–۵/۵۳ است. این سنگها به طور عموم تهی شده در کل REEها هستند. نمونه 1-BS05 نسبت به دو نمونه دیگر تهی شدگی بیشتری را نشان می دهد که بیانگر تفاوت در منشأ آنها همراه با درجه ذوب بخشی متفاوت است. غنی شدگی در عناصر Pb, Ba (U و تهی شدگی در ND از مشخصههای این سنگ هاست (شکل ۳۲).

4- گابروهای پگماتیتی

– توصیف و سنگنگاری: به صورت انباشته های کوچک و پراکنده ای درون پریدوتیت ها دیده می شوند که به طور عموم از Cpx و پلاژیو کلاز تشکیل شده اند. Cpx ها به طور عموم دگر شکل بوده که نشان دهنده صعود توده گابروی پگماتیتی به صورت خمیر مذاب (Melt Mush) است.

- زمین شیمی کل سنگ: مقدار # Mg محاسبه شده حدود ۶۷ ٪ است و الگوی REE (بهنجار شده به کندریت) برای این سنگ ها مسطح بوده و علاوه بر این میزان کل REEها برای گابروهای پگماتیتی پایین است که این امر به سبب کانی شناسی ساده آنها (متشکل از پلاژیو کلاز و کلینو پیروکسن) است. غنی شدگی از عناصری مانند Pb, Sr, U , cs, و تهی شدگی از عناصر Ta, Nb از ویژگی های این گابروهاست (شکل TD).

۵- دایکها و سیلهای گابرویی

- **توصیف و سنگنگاری:** در پریدوتیتهای این مجموعه افیولیتی، دایکها و سیلهای گابرویی بدون حاشیه سرد وجود دارند، که به طور معمول ریزدانه بوده و دارای کلینوپیروکسن (با میانبارهای الیوین)، پلاژیوکلاز و اولیوین است. تالک و کلسیت به صورت رگههایی در آنها وجود دارد. بافت آنها عموماً اینتر گرانولارتا افیتیک است.

- زمین شیمی کل سنگ: دارای SiO₂ مقدار میانگین ۴۲/۵ درصد وTiO₂ پایین با مقدار میانگین ۷/۸ درصد است. الگوی بهنجار شده (کندریت) REE تقریباً مسطح است و علاوه بر این، Th, U, Pb, Sr برای این سنگها بی هنجاری مثبت و Nb بی هنجاری منفی را نشان می دهند (شکل ۳۲) که مشخصه ما گماهای مرتبط با IAT یا تولئیت جزایر کمانی است.

۶- دایکهای دیابازی

- توصیف وسنگنگاری: دایکهای دیابازی ریشه در پریدوتیتهای منطقه دارد و عموماً رودنگیتی شدهاند. پلاژیو کلاز و کلینوپیروکسن از کانیهای اصلی است. وزوویانیت، سرپانتین، اپیدوت، اکتینولت، کلریت، هیدرو گروسولاریت و پکتولیت از کانیهای فرعی و ثانویه تشکیل دهنده این دایکها است (شکلG ۲).

زمین شیمی کانیایی: مقدار CaO, CaO, Al₂O₃, TiO₂, CaO کلینو پیرو کسن های موجود
 در دایک های دیابازی متغیر بوده و به ترتیب تغییراتی بین((wtw) ۱۸/۱۳–۱۰/۶۱
 و (۳۲۸۶–۱/۲۲ و (wtw) ۲/۱۵۲–۱/۱۲ را نشان می دهند.

مقایسه با توالی پوستهای

میکرو گابروها و گدازههای بالشی از سنگهای مافیک توالی پوستهای هستند که بهطور محدود در این منطقه گسترش یافتهاند. میکروگابروها دارای الگوی REE تقریباً مسطح بوده که در Nb ,Ta بی هنجاری منفی و در بیشتر عناصر LIL بی هنجاری مثبت نشان میدهند (شکل ۳G). نسبت _(N) /Yb دراین سنگها در طیفی بین ۵۱/۱ و ۱/۲۴ میباشد. گدازههای بالشی نیز روند مسطحی را در الگوی بهنجار شده REE ها نشان میدهند. همچنین گدازههای بالشی درعناصر LIL بی هنجاری مثبت و در Nb ,Ta بی هنجاری منفی را نشان میدهند (شکل ۳H). این ویژگی های زمین شیمیایی، از مشخصه بازالتهایی است که در محیطهای مرتبط با فرورانش به وجود می آیند. نسبت _(N) /Yb بین ۱/۰۱و۱/۰۴ در تغییر است. دایکهای گابرویی– دیابازی توالی گوشتهای به همرا میکروگابروها وگدازههای بالشی از نظر ترکیبی در نمودار (Winchester & Floyd, 1977; Pearce, 1996) ; $Log(Nb/Y)-Log(Zr/TiO_2)$ در محدوده بازالت قرار گرفتهاند (شکل۴). همچنین بر اساس نمودارهای Zr-Nb-Y (Meschede, 1986) (شكل ۵) بيشتر نمونه ها گرايش به MORB و بازالت هاي جزایر کمانی نشان میدهند. در نمودارTi/1000 در برابر V (Shervais,1982) (شكل ۴) و همچنين در نمودار سهتايي Hf/3 ,Th ,Nb/16 (Wood, 1980) (شكل ۷) سنگهای مافیک منطقه ویژگیهای بین MORB و IAT را نشان میدهند.

سنگزایی

مقدار # Mg در پریدوتیتهای گوشتهای بهطورعموم شاخصی برای تعیین درجه تهى شدگى گوشته يا درجه ذوب بخشى است به طورى كه در نسبت هاى بالاى#Mg، درجه ذوب بخشى بالا است (Coleman, 1977; Nicolas & Prinzhofer, 1983) . علاوه بر این، از عناصر Na, Na, Cr ,Al ,Na نیز می توان برای تعیین درجه تهی شدگی استفاده کرد به طوری که Ni ,Cr از عناصر سازگار بوده و در درجه کم ذوب بخشی در پریدوتیت میزبان، باقی مانده و وارد مذاب نمی شوند، ولی عناصر Al ,Na ,Ti از عناصر ناساز گار بوده و در درجات اندک ذوب بخشی نیز وارد مذاب می شوند. عدد کروم # Cr اسپینل در پریدوتیتها معیاری مناسب برای تعیین درجه تهی شدگی یک منبع گوشتهای است. افزایش مقدار # Cr اسپینل در پریدوتیتها نشان دهنده افزايش درجه ذوب بخشي است(Dick & Bullen, 1984; Arai,1994). همان طور كه نمودارهای (Cr+Al)/(Mg+Fe2+) در برابر (Mg+Fe2+)/(Cr+Al) برای اسپینلهای موجود در پریدوتیتها (Dick & Bullen,1984) و نمودار عدد کروم# Crاسپینل،ها در برابر عدد منیزیم# Mg اولیوینها (Arai,1994) مشخص است، پریدوتیتهای منطقه مورد مطالعه بیشتر از نظر ترکیبی گرایش به پریدوتیتهای اقیانوسی(abyssal peridotites) داشته و درصد پایینی از ذوب بخشی در حدود ۷–۱۷٪ را نشان میدهند (شکل۸ و۹). الگوی REEهای پریدوتیتهای نائین در مقایسه با پريدوتيتهاى آلپى (Li,1992) و پريدوتيتهاى محور ميان اقيانوسى خاور آرام (Niu & Hekinian, 1997; Girardeau & Francheteau, 1993) (EastPacificRise) روند تقريباً مشابهی را نشان میدهد. از سوی دیگر، این الگو نسبت به

اللي المحافظ

پريدوتيتهاى تهىشدهاى همچون دياپير مقصد (Maqsad) (Godard et al., 2000) (Maqsad) و همچنين پريدوتيتهاى Wuqbah (Girardeau et al., 2002) Wuqbah عمان، به علت تفاوت در درجه تهىشدگى، روند متفاوتى را نشان مىدهند (شكل۱۰).

برای به دست آوردن درصد ذوب بخشی پریدو تیت ها از نمودارهای لگاریتمی Yb در برابر V, SC (Pearce & Parkinson, 1993) استفاده شده است. بر اساس این نمودارها، پریدو تیت ها تقریباً ۷–۱۸٪ ذوب بخشی را متحمل شده اند (شکل ۱۱). نمودار Vb در برابر V برای به دست آوردن فو گاسیته اکسیژن در هنگام ذوب بخشی نیز در پریدو تیت ها پیشنهاد شده است (Pearce & Parkinson, 1993; Melcher et al., 2002). نمودارهای Vدر مقابل Vb برای پریدو تیت های نائین نشان دهنده 200 بالا نسبت به پریدو تیت های مرتبط با مورب ها است که نشان می دهد پریدو تیت های این منطقه مربوط به پریدو تیت های مناطق SSZ است. بر اساس الگوی Lonov et al. (2002). پریدو تیت های منطقه به کمک نمودار ارائه شده توسط (2002). Stinzer (1997).

دایکهای گابرویی – دیابازی، گدازههای بالشی و میکرو گابروها در الگوی REE (بهنجار شده به کندریت) روند تقریباً مسطح نسبت به کندریت را نشان می دهند. همچنین این سنگها در HFSE تهی شدگی و در LIL غنی شدگی را در نمودارهای چند عنصری (بهنجار شده به گوشته اولیه) نشان می دهند که می تواند مر تبط با ویژگی های مناطق IAT باشد. سنگهای مافیک این منطقه ویژگی های سری ماگمایی تولئیتهای کم پتاسیم را نشان می دهند و همچنین در نمودارهای تشخیص جایگاه تشکیل سنگهای مافیک، سنگهای مافیک این منطقه ویژگی های سری ماگمایی تولئیتهای کم پتاسیم و انشان می دهند و همچنین در نمودارهای تشخیص جایگاه تشکیل سنگهای مافیک، سنگنهای مافیک این منطقه ویژگی مناطق MORB و IAT را نشان می دهند (شکل های ه و ۶ و ۷). بازالتهای مناطق پشت کمانی از نظر زمین شیمیایی حدواسط بین MORB و IAT هستند که این مسئله به احتمال می تواند از آمیختگی این دو ناشی شده باشد و ایش آن را می توان با یک محیط پشت کمانی مرتبط دانست.

نتيجه گيري

افیولیتهای نائین از جمله افیولیتهایی است که بهطورعمده از سنگنهای توالی گوشتهای بهویژه پریدوتیتها تشکیل شده است. پریدوتیتهای افیولیت نائین بهطورعمده از هارزبورژیتهای cpxدار و لرزولیتها با درجه ذوب بخشی حدود ۷-۸۸٪ تشکیل یافته که بر اساس مطالعه حاضر میتوان این پریدوتیتها، باعث ایجاد یک محیط SSZ دانست. تفاوت درجه ذوب بخشی این پریدوتیتها، باعث ایجاد سنگههایی با درجه غنیشدگی متفاوت در REEها شده است. علاوه بر این تفاوت در غنیشدگی REEها را میتواند ناشی از ذوب دو مرحلهای منشأ گوشتهای نیز دانست.

آلودگیهای گابرویی در ژرفاهای زیاد، در اثر درجه ذوب بخشی کم پریدوتیتهای تهی شده ایجاد شده است. مذاب حاصل از این نرخ کم ذوب، تحت شرایط تغییر پلاستیکی نتوانسته راه خود را به صورت شکستگیهای هیدرولیکی به بالا باز کنند و در پریدوتیتها انتشار یافته و باعث آلوده کردن پریدوتیتهای اطراف شده است.

دایکهای گابرویی با درجه تفریق بخشی بالاتری نسبت به گابروهای پگماتیتی و آلودگیهای گابرویی به صورت دایکهای تزریقی در هارزبورژیتهای که در زیر منحنی سولیدوس قرار داشتهاند، تزریق شدهاند.

سنگهای مافیک این مجموعه افیولیتی ویژگیهای سریهای تولئیتی جزایر کمانی را نشان میدهند. همچنین این سنگها در نمودارهای زمین ساختی-ماگمایی و نمودارهای پراکنش عناصر فرعی ویژگیهای بین محطهای پشتههای میان اقیانوسی تهی شده و جزایر کمانی را نمایان سی

میکنند. با توجه به اینکه این ویژگیها بیشتر مرتبط به حوضههای حاشیهای کششی هستند، میتوان برای محیط تشکیل افیولیت نائین، یک حوضه پشت کمانی را پیشنهاد داد.

سپاسگزاری

از J. Ravaux در آزمایشگاه میکروپروپ دانشگاه نانسی و از R. Boutin و R. Thuizat در آزمایشگاه زمین شیمی دانشگاه لوئی پاستور به سبب همکاری طی تجزیه نمونه های این تحقیق تشکر میکنیم. همچنین از داوران محترم و ناشناس این مقاله، بابت رهنمودهای ارزشمندشان بسیار سپاسگزاریم.

۱- هارزبورژیت ۲ - سرپانتینیت با دایکهای دیابازی و گابرویی ۳ - سنگهای دگر گونی
 ۴- دیاباز ۵ - رادیولاریت ۶ - سنگ آهک پلاژیک سنونین - ماستریشتین
 ۷-سنگ آهک پالئوسن میانی تا انوسن زیرین ۸ - سنگهای آذر آواری های انوسن
 ۹- آندزیت - تراکی آندزیت ۱۰ - آندزیت پورفیری ۱۱ - پورفیریت
 ۱۲ - گدازه های داسیتی ۱۳ - کواتز پورفیری ۴۰ - گرانودیوریت اولیگوسن پایینی
 ۱۲ - گدازه های داسیتی ۱۳ - کواتز پورفیری ۹۱ - گرانودیوریت اولیگوسن پایینی
 ۱۸ - سنگ آهک و ماسه سنگ آهکی اولیگوسن - میوسن ۹۱ - کنگلومرای میوسن - ۱۸ - سنگ آهک و ماسه سنگ آهکی اولیگوسن - میوسن ۹۱ - کنگلومرای میوسن - ۱۸ - سنگ آهک و ماسه سنگ آهکی اولیگوسن بالایی
 ۱۸ - سنگ آهکی و ماسه سنگ آهکی اولیگوسن - میوسن ۹۱ - کنگلومرای میوسن - ۱۸ - سنگ آهکی و ماسه سنگ آهکی اولیگوسن بالایی ۲۱ - رسوبات کواترنری
 شکل ۱ - موقعیت منطقه مورد مطالعه در نقشه پراکندگی افیولیتهای ایران و نقشه شکل ۱ - موقعیت منطقه مورد مطالعه در نقشه پراکندگی افیولیتهای ایران و نقشه

جدول۱- نتایج تجزیه کل سنگ برای سنگهای مافیک و اولترامافیک افیولیتهای نائین

Series Name	gabbro- dike	Gabbroic dike	diabasic dike	diabasic dike	diabasic dike		diabasic dike	im pe	pregnated ridotite		mpregnated peridotite
sample id	BS05-17	BSP-3	BAH-14	BS05-13	BS05-16	Т	BKSh-7	BI	KB05-4	G	BS05-1
SiO2	54.3	30.8	53.4	41.9	51	Т	55.1	41	.5	4	45
TiO2	0.759	0.826	0.751	0.164	0.507	Т	1.11	0.1	198	().088
Al2O3	14.8	22	14.1	10.1	14.7	Т	15.0	4.	7		1.59
FeOt	11.4	3.93	9.9	6.42	8.91	Т	9.75	11		L	5.3
MnO	0.262	0.075	0.145	0.095	0.207	Т	0.232	0.1	161		0.106
MgO	6.21	5.7	3.57	6.77	7.52	Т	2.22	30		Ľ	27.8
CaO	5.14	25.7	13.1	29	7.88	Ι	4.88	4.4	5		11.9
Na2O	3.77	0	0	0.25	4.51		6.08	0.3	31)
K2O	0.84	0	0	0.01	0.522		0.143	0.1).06
P2O5	0.1	0.108	0.06	0.04	0.02		0.131	0.0)2		0.01
LOI	2.79	9.54	4.25	4.12	2.91			6.	14	6	5.02
Total	100.41	98.67	99.26	98.85	98.65			98	.64	(98.89
Ba	59	2.44	5	20	23.3		47	14		0)
Rb	7.51	0.397	0.271	0.262	2.68		1.47	0.0	596	().045
Sr	137	247	86	52	83.2		560	46			15
Y	19.5	20.1	18.9	6.39	13		19	6.	21	Ŀ	3.25
Zr	44	61.6	32.5	27.4	17.5		32	13	.2	L	1.56
Nb	0.616	0.642	0.45	1.09	0.261	Ļ	0.380	0.4	143).094
Th	0.464	0.337	0.213	0.238	0.09	Ļ	0.096	0.0)83).005
Pb	1.84	0.988	5.47	1.97	6.87	Ļ	2.81	2.0	53	().261
Zn	98	36.2	73	33	120	Ļ	84	79		Ľ	28
Cu	80.2	5.49	61.1	33.2	83.2	Ť	10	17	.8	Ľ	10.5
Ni	23	65.7	29	54	56	Ť	9	98	8	Ŀ	504
V	303	142	411	196	264	Ť	265	10	9	Ľ	111
Cr	30	66	6	231	177	Ļ	12	22	15	Ľ	2390
Hf	1.3	1.97	1.12	0.731	0.64	Ļ	1.01	0.3	351	1).049
Cs	0.412		0.019	0.037	0.032	Ļ	0.044	0.0)87	1).003
Sc	41	13.4	34	34	41.6	∔	40	19		4	43
Та	0.047	0.404	0.031	0.077	0.03	∔	0.038	0.0)15	L	
Co	35.6	17.6	29.4	29.7	31	╇	15.2	11	3	Ľ	74.4
U	0.153	0.148	0.141	0.208	0.062	╀	0.234	0.0)33	1).048
W	2.32	2.65	0.753	1.14		╀	0.360	0.2	296	1).254
La	2.21	2.73	1.56	1.24	0.852	╋	1.71	0,4	193	⊢	
Ce	5.55	7.74	4.35	2.62	2.36	╋	4.07	1.3	39	Ľ).096
Pr	0.909	1.33	0.756	0.348	0.443	╋	0.720	0.2	244		0.032
Nd	5.08	7.28	4.27	1.59	2.5	╋	4.13	1.2	27).269
Sm	1.89	2.5	1.62	0.419	1.02	╋	1.64	0.	010	H	J.167
Eu	0.728	0.954	0.647	0.171	0.479	╋	0.585	0.	193	H	J.092
Ud Th	2.44	2.65	2.7	0.122	1.59	╋	2.280	0.0	004	H	0.287
1D	0.44	2.0	0.41/	0.122	0.269	╈	0.408	0.	120	H	J.059
DV U	3.55	3.9	2.98	0.915	2.02	╈	2.85	0.9	20/	H).511
HO	0.775	0.875	0.73	0.235	0.48/	╈	0.658	0.2	234	H).113
Eľ m	2.08	2.41	1.9/	0.101	1.23	╋	1.8/	0.	0/2	H	<u>J.2/7</u>
1m N/I	0.341	0.388	0.338	0.121	0.204	╋	0.331	0.0	88	H	0.044
Y b	2.1	2.28	2.07	0.142	1.36	╋	1.90	0.0	0.5.5	H	J.267
Lu	0.355	0.335	0.332	0.143	0.218	╋	0.292	0.	0 < 01	H	0.047
11	4549.438	4951.036	4501.486	985.0144	5038.953	1		Ш	80.81	Ľ	02/.4/11
Series	peridotite	peridotite	peridotite	peridotite	e peridoti	te	pyroxeni	te	pyroxenite		Websterite
Name sample id	BKB-7	BPV-12	BSU14	BV23	BKSh 1	2	BKSH 4		BKSHAD	4	BKSH-11
SiO2	40.7	39.1	38	38.9	40.5	2	44.3	_	44.8		46.5
TiO2	0.016	0.020	0.017	0.043	0.036	_	0.085	_	0.079	-	0.057

Sumpro_ru	Ditto /	101 1 12	00011	10120	101001112		Diabitino	
SiO2	40.7	39.1	38	38.9	40.5	44.3	44.8	46.5
TiO2	0.016	0.029	0.017	0.043	0.036	0.085	0.079	0.057
Al2O3	0.805	1.99	1.12	7.27	2.93	2.18	2.67	9.36
FeOt	8.22	7.86	8.04	7.82	8.93	8.57	8.62	5.94
MnO	0.12	0.107	0.108	0.118	0.126	0.134	0.131	0.113
MgO	43.3	39.3	42.9	30.5	31.8	27.2	26.6	20.8
CaO	0.763	2.03	0.586	7.13	6.33	10.4	9.96	13
Na2O	0.05	0	0.2	0.227	0.014	0.09	0.05	0.151
K2O	0.07	0.13	0.18	0.001	0.003	0.08	0.05	0.009
P2O5	0.05	0.03	0.05	0.046	0.007	0.05	0.05	0.05
LOI	5.35	8.95	8	7.57		6	6.04	3.59
Total	99.31	99.52	99.12	99.69	Ì	99.11	98.55	99.53
Ba	5	7	2	7.33	6	4	6	2.71
Rb	0.228	1	0.174	0.594		0.221	0.282	0.306
Sr	19	13	4	170	19	13	17	22.4
Y	2	0.928	2	2.77	2	5	4	2.9
Zr	9	0.561	9	3.98	1	9	3	6.9
Nb	0.01	0.03	0.372	0.015	0.023	0.103	0.099	0.114
Th	0.023	0.022	0.022		0.017	0.032	0.038	0.01
Ph	0.892	1.63	1.72	0.608		1.47	1 59	1.15
Zn	48	57	39	65.7	48	33	21	61.2
Cu	29.5	19.1	12.5	113	24	11.5	13.9	144
Ni	2007	1800	1946	1268	003	810	865	58/
V	55	65	46	56	77	149	144	120
r Cr	2828	2294	2421	4119	2915	2434	2406	2326
Hf	0.023	0.018	0.027	0.056	0.033	0.1	0.103	0.088
Cs.	0.023	0.010	0.012	0.050	0.055	0.1	0.005	0.000
Sc	11	12	10	15.2	22	46	45	35
Ta	1	0.002	0	0.36	0.001	0	0.045	
Co	124	107	96.4	106	8/1.8	97.6	83.3	61.6
U	0.051	0.042	0.076	0.033	0.020	0.021	0.02	01.0
w	0.303	0.042	0.070	2.62	0.020	0.115	0.02	2.84
" [9	0.505	0.224	0.25	2.02	1.46	0.088	0.005	2.04
Co	0.05	i	0.02	0.061	0.108	0.000	0.010	0.138
Pr	0.012	0.001	0.02	0.001	0.017	0.255	0.053	0.025
Nd	0.012	0.001	0.000	0.143	0.007	0.397	0.337	0.025
Sm	0.03	0.015	0.021	0.000	0.059	0.222	0.357	0.082
Fu	0.009	0.014	0.005	0.054	0.037	0.081	0.071	0.049
Gd	0.051	0.052	0.003	0.004	0.037	0.372	0.311	0.017
Th	0.006	0.016	0.006	i	0.018	0.08	0.062	<u> </u>
Dv	0.000	0.126	0.052	0.20	0.018	0.00	0.502	0.336
Ho	0.074	0.035	0.032	0.067	0.042	0.164	0.129	0.084
110	0.024	0.035	0.013	0.007	0.042	0.104	0.127	0.004
Er		1 16 174	0.040	0.10	0.111	0.417	0.50	0.231
Er	0.069	0.027	0.007	0.021	0.022	0.065	0.054	0.044
Er Tm Vb	0.009	0.027	0.007	0.031	0.023	0.065	0.054	0.044
Er Tm Yb	0.009	0.027	0.007	0.031 0.186	0.023	0.065	0.054	0.044

Series	impregnated	Micro	Micro	Micro	Micro	Micro	negmatite	peridotite
Name	peridotite	gabbro	gabbro	gabbro	gabbro	gabbro	gabbro	peridotte
sample_id	BSP4	BAH-19	BAH-20	BS05-10	BS05-4A	BS05-4B	BKSH-6	BKB-1
SiO2	39.4	50.5	53.9	52.2	49.3	48.8	49.7	36.5
TiO2	0.272	0.512	1.05	0.897	0.806	0.847	0.119	0.011
A12O3	4.27	15.1	14.4	15.4	15.3	15.4	16.7	1.14
FeOt	8.97	9.03	12.3	10.9	8.5	8.84	4.66	7.63
MnO	0.13	0.166	0.222	0.166	0.165	0.163	0.084	0.103
MgO	34.1	8.43	5.11	6.44	6.79	6.56	12.2	41.7
CaO	3.5	7.63	4.92	5.48	11.4	11	13.6	1.15
Na2O	0.365	3.82	4.74	2.68	3.27	3.63	0.73	0.03
K2O	0.088	1.04	0.43	3.02	0.85	0.79	0.08	0.13
P2O5	0.017	0.05	0.1	0.085	0.08	0.08	0.03	0.01
LOI	7.52	2.73	2.48	2.28	3.22	3.23	2.15	10.79
Total	98.69	99.06	99.67	99.59	99.66	99.41	100.05	99.21
Ba	3.37	79	23	177	110	102	37	4
Rb	0.856	8.42	2.64	15	13.8	13.2	1.01	0.216
Sr	8.35	132	130	252	216	232	201	17
Y	6.04	13.1	26	17.2	21.5	20.3	3.63	0.922
Zr	15.3	23.5	60.9	39.5	51.8	49.3	4.49	1.74
Nb	0.172	0.379	0.677	0.487	2.05	1.93	0.118	0.051
Th	0.081	0.295	0.578	0.332	0.282	0.158	0.085	0.05
Pb	3.04	2.26	2.39	2.73	2.01	0.704	0.782	1.52
Zn	86.8	64	116	71.6	90	76	33	57
Cu	46.9	42.2	37.3	1.27	30.6	24.3	26.4	3.76
Ni	1618	71	19	47.7	98	84	217	1851
v	74.7	256	379	299	249	241	124	41
Cr	2845	234	10	173	353	352	786	1732
Hf	0.516	0.792	1.97	1.21	1.46	1.37	0.165	0.028
Cs	0.197	0.395	0.042	0.129	0.586	0.52	0.103	0.01
Sc	12.9	39	41	35	40	37	31	9
Та	0.023	0.038	0.059	0.036	0.141	0.155	0.005	0.013
Co	102	36.1	36.8	38.3	46.2	39.3	31.9	111
U	0.195	0.116	0.308	0.221	0.079	0.158	0.025	0.029
W	0.024	0.503	0.393		2.08	1.02	0.711	0.617
La	0.487	1.19	3.15	3.55	2.25	2.18	0.311	0.051
Ce	1.68	3.2	8.25	8.05	6.36	6.01	0.701	0.125
Pr	0.311	0.562	1.39	1.23	1.08	1.05	0.105	0.012
Nd	1.68	3.29	7.76	6.01	5.74	5.7	0.599	0.082
Sm	0.672	1.25	2.9	2.11	2.05	2.05	0.241	0.031
Eu	0.253	0.505	1.04	0.663	0.831	0.827	0.119	0.008
Gd	0.761	1.75	3.45	2.5	2.76	2.55	0.321	0.032
Tb	0.146	0.315	0.661	0.426	0.52	0.49	0.068	0.007
Dy	1.05	2.36	4.72	3.05	3.55	3.34	0.526	0.08
Ho	0.246	0.584	1.09	0.694	0.829	0.798	0.118	0.021
Er	0.615	1.53	2.9	1.83	2.13	2.09	0.375	0.068
Tm	0.094	0.248	0.478	0.28	0.335	0.322	0.06	0.008
Yb	0.612	1.58	2.94	1.91	2.33	2.19	0.378	0.084
Lu	0.101	0.246	0.478	0.276	0.343	0.358	0.065	0.015
Ti	1630.365	3068.923	6293.69	5376.609	4831.156	5076.91	713.2848	65.93389

Series	pillow	pillow	pillow	pillow	pillow	pillow lava
Name	lava	lava	lava	lava	lava	
sample id	BAH-35	BAH-36	BF-4	BF2	BPV2	BS05-3
SiO2	48.9	47.1	28.1	44.7	49.4	49.1
TiO2	0.867	0.937	0.559	0.724	0.329	0.797
Al2O3	15.6	15.8	19.4	16.7	16.5	15.3
FeOt	8.78	8.72	8.16	8.93	10.2	7.69
MnO	0.135	0.136	0.13	0.159	0.172	0.139
MgO	7.26	7.52	4.73	5.44	5.4	7.54
CaO	9.74	9.86	15	13.2	9.64	13.6
Na2O	3.56	3.53	15.89	3.38	3.75	2.51
K2O	0.79	1.34	2.2	0.49	0.84	0.25
P2O5	0.12	0.12	0.41	0.09	0.05	0.08
LOI	3.22	4.14	4.76	5.23	2.66	1.86
Total	99.01	99.18	99.39	98.98	98.89	98.9
Ba	54	102	16	17	145	25
Rb	10.9	14.7	6.53	8.41	14.6	4.19
Sr	170	198	184	199	302	112
Y	19.9	21	19	19	28	21.1
Zr	61.1	55	44	44	67	50.3
Nb	2.63	2.39	1.26	1.13	1.07	1.93
Th	0.302	0.263	0.165	0.11	0.09	0.186
Ph	2.05	3.63	3.29	1.41	3.68	1.6
Zn	78	61	91	109	68	75
Cu	97.9	37	39	31.2	44.8	64.1
Ni	79	91	122	126	61	119
V	232	235	249	249	288	228
Cr	236	257	566	572	194	331
Hf	1.57	1.49	1.2	1.21	1.82	1.48
Cs	0.391	0.597	0.172	0.203	0.386	0.114
Sc	41	43	38	39	43	37
Ta	0.188	0.189	0.099	0.098	0.08	0.161
Co	47.3	45.5	41.7	40.9	40.2	45.6
U	0.152	0.231	0.573	0.12	0.056	0.06
W	2.18	1.24	0.762	0.549	0.226	0.897
La	2.8	3.02	1.65	1.58	1.86	2.31
Ce	7.3	7.55	4.93	4.91	6.11	6.03
Pr	1.24	1.24	0.849	0.844	1.12	1.04
Nd	6.43	6.32	4.66	4.64	6.39	5.67
Sm	2.31	2.12	1.7	1.77	2.43	2.05
Eu	0.879	0.84	0.716	0.704	0.946	0.828
Gd	2.56	2.65	2.27	2.28	3.24	2.67
Tb	0.507	0.495	0.455	0.415	0.622	0.475
Dy	3.51	3.44	3.19	3.12	4.49	3.39
Ho	0.837	0.796	0.756	0.713	1.09	0.826
Er	2.19	2.07	1.91	1.88	2.88	2.11
Tm	0.311	0.341	0.307	0.29	0.474	0.334
Yb	2.2	2.02	1.87	1.79	2.77	2.26
Lu	0.352	0.338	0.322	0.284	0.46	0.339
T	5106 780	5616 260	2250 64	4220 640	1072 022	4777.01

زمین شیمی و سنگ شناسی توالی گونانهای در افیولیتهای کائین

جدول۲- نتایج تجزیه کانیایی ارتوپیروکسنها در پریدوتیتهای نائین

Name	BKB.13-2	BSU-14-1	BSU-14-2	BSU-14-3	BSU-14-4	BSU-14-5	BSU-14-7	BSU15-11	BSU-14-8	BSU15-12	BSU15-13	BSU15-14	BSU15-5
Rock-type	Peridotite												
SiO2	56.964	56.3675	56.1042	56.7063	56.8807	55.3065	56.5728	54.6544	57.929	54.8136	54.9866	53.7358	58.1141
TiO2	0.0002	0.0274	0.0002	0.0002	0.0442	0.0396	0.0319	0.0065	0.0403	0.0073	0.0652	0.0002	0.0002
Al2O3	3.4853	2.7552	2.866	2.5313	2.6911	2.8564	1.9246	3.9966	2.0731	3.9735	3.936	3.8118	1.2251
FeO	5.7013	5.6374	5.689	5.8191	5.8454	5.789	5.844	6.4457	6.0664	6.173	6.5979	6.3136	6.2611
Cr2O3	0.8973	0.5755	0.592	0.4007	0.3692	0.5256	0.2719	0.4779	0.2613	0.4834	0.5802	0.4932	0.0653
MnO	0.0909	0.1176	0.1144	0.2401	0.0925	0.011	0.0975	0.2726	0.0942	0.0094	0.0498	0.2175	0.2893
NiO	0.1983	0.0159	0.127	0.0954	0.1063	0.1334	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0142
MgO	32.336	32.8467	34.0578	33.9105	33.8557	33.0228	34.2493	33.9592	34.6554	32.934	33.6436	32.9758	34.985
CaO	2.0619	0.5427	0.5653	0.551	0.6256	0.8133	0.4148	0.6147	0.5346	0.469	0.5743	0.5936	0.4338
Na2O	0.0094	0.0258	0.2603	0.0262	0.1015	0.0478	0.03	0.0397	0.0334	0.2104	0.0908	0.0402	0.0003
K2O	0.0388	0.0252	0.034	0.0248	0.0348	0.0001	0.0458	0.0001	0.0001	0.0001	0.0001	0.0341	0.0137
Total	101.78	98.94	100.41	100.31	100.65	98.55	99.48	100.47	101.69	99.07	100.52	98.22	101.4
TSi	1.943	1.968	1.921	1.949	1.948	1.936	1.956	1.873	1.963	1.906	1.886	1.886	1.974
TAl	0.057	0.032	0.079	0.051	0.052	0.064	0.044	0.127	0.037	0.094	0.114	0.114	0.026
TFe3	0	0	0	0	0	0	0	0	0	0	0	0	0
M1Al	0.083	0.082	0.036	0.052	0.056	0.054	0.035	0.034	0.045	0.068	0.045	0.043	0.023
M1Ti	0	0.001	0	0	0.001	0.001	0.001	0	0.001	0	0.002	0	0
M1Fe3	0	0	0.045	0	0	0	0.004	0.082	0	0.026	0.056	0.061	0.001
M1Fe2	0	0	0	0	0	0	0	0	0	0	0	0	0
M1Cr	0.024	0.016	0.016	0.011	0.01	0.015	0.007	0.013	0.007	0.013	0.016	0.014	0.002
M1Mg	0.887	0.901	0.899	0.935	0.93	0.927	0.953	0.871	0.947	0.892	0.882	0.882	0.973
M1Ni	0.005	0	0.003	0.003	0.003	0.004	0	0	0	0	0	0	0
M2Mg	0.757	0.809	0.839	0.803	0.799	0.796	0.812	0.864	0.804	0.815	0.838	0.843	0.798
M2Fe2	0.163	0.165	0.118	0.167	0.167	0.169	0.166	0.103	0.172	0.153	0.133	0.124	0.177
M2Mn	0.003	0.003	0.003	0.007	0.003	0	0.003	0.008	0.003	0	0.001	0.006	0.008
M2Ca	0.075	0.02	0.021	0.02	0.023	0.031	0.015	0.023	0.019	0.017	0.021	0.022	0.016
M2Na	0.001	0.002	0.017	0.002	0.007	0.003	0.002	0.003	0.002	0.014	0.006	0.003	0
M2K	0.002	0.001	0.001	0.001	0.002	0	0.002	0	0	0	0	0.002	0.001
Sum_cat	3.998	3.999	3.999	3.999	3.998	4	3.998	4	4	4	4	3.998	3.999
WO	3.998	1.07	1.077	1.05	1.195	1.586	0.787	1.157	0.998	0.917	1.092	1.151	0.8
EN	87.235	90.075	90.29	89.931	89.953	89.587	90.412	88.964	90.023	89.642	89.037	88.961	89.766
FS	8.768	8.856	8.633	9.019	8.852	8.827	8.801	9.879	8.979	9.44	9.87	9.888	9.434
Mineral	Opx												

جدول۳- نتایج تجزیه کانیایی کلینوپیروکسنها در سنگهای مختلف افیولیتهای نائین

Name	BS05.16-1	BS05.16-10	BS05.16-11	BS05.16-12	BS05.16-13	BS05.16-14	BS05.16-15	BS05.16-16	BS05.16-17	BS05.16-2	BS05.16-3	BS05.16-4	BS05.16-5	BK05.4-20
Rock-type	diabasic dike	Gab .impreg												
SiO2	52.6795	50.678	50.946	52.645	51.78	50.701	50.6758	50.4064	51.7596	51.9661	51.8699	53.4202	52.696	52.8243
TiO2	0.2851	0.384	0.362	0.162	0.142	0.692	0.3448	0.4084	0.2568	0.3237	0.3694	0.1199	0.281	0.1652
Al2O3	2.9905	3.333	3.159	1.886	1.121	3.243	3.3858	3.6391	2.8552	3.7557	3.7889	2.1919	2.6	2.4721
FeO	6.1436	7.843	8.607	5.114	5.105	9.539	9.6797	7.9829	8.4853	5.8413	6.0834	4.9833	6.701	4.2986
Cr2O3	0.2214	0.077	0.043	0.739	0.481	0.015	0.0002	0.0462	0.0002	0.4798	0.5933	0.7929	0.331	0.8427
MnO	0.1961	0.184	0.226	0.167	0.177	0.029	0.28	0.3761	0.233	0.1776	0.1107	0.2134	0.132	0.1174
NiO	0.0002	0.119	0	0	0.138	0.133	0.0002	0.0002	0.0987	0.0188	0.0659	0.0031	0.134	0.0142
MgO	17.3726	16.711	15.624	17.294	19.987	14.242	15.9021	16.4265	17.2665	17.1928	16.9972	18.2687	16.897	17.2748
CaO	19.7622	19.508	19.206	19.737	20.454	19.439	18.6572	18.6273	18.1309	20.1424	19.6721	20.5749	20.27	21.4816
Na2O	0.1334	0.255	0.19	0.257	0.183	0.366	0.1779	0.1481	0.1516	0.1371	0.1087	0.1844	0.193	0.2366
K2O	0.0256	0.005	0.035	0.059	0	0.018	0.0001	0.0426	0.0404	0.0236	0.0001	0.0001	0.008	0.0444
Total	99.81	99.1	98.4	98.06	99.57	98.42	99.1	98.1	99.28	100.06	99.66	100.75	100.24	99.77
TSi	1.929	1.876	1.911	1.959	1.88	1.914	1.889	1.888	1.913	1.897	1.905	1.93	1.928	1.929
TAI	0.071	0.124	0.089	0.041	0.048	0.086	0.111	0.112	0.087	0.103	0.095	0.07	0.072	0.071
TFe3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M1Al	0.058	0.021	0.05	0.042	0	0.058	0.038	0.048	0.038	0.059	0.068	0.023	0.04	0.036
M1Ti	0.008	0.011	0.01	0.005	0.004	0.02	0.01	0.012	0.007	0.009	0.01	0.003	0.008	0.005
M1Fe3	0.002	0.098	0.032	0	0	0.015	0.066	0.052	0.047	0.023	0	0.03	0.021	0.02
M1Fe2	0	0	0.032	0	0	0.101	0.003	0	0	0	0	0	0	0
M1Cr	0.006	0.002	0.001	0.022	0.014	0	0	0.001	0	0.014	0.017	0.023	0.01	0.024
M1Mg	0.926	0.865	0.874	0.932	0.978	0.802	0.884	0.887	0.905	0.895	0.902	0.921	0.918	0.915
M1Ni	0	0.004	0	0	0.004	0.004	0	0	0.003	0.001	0.002	0	0.004	0
M2Mg	0.022	0.057	0	0.027	0.103	0	0	0.03	0.046	0.041	0.028	0.063	0.004	0.026
M2Fe2	0.186	0.145	0.206	0.159	0.155	0.185	0.233	0.198	0.215	0.155	0.187	0.121	0.184	0.111
M2Mn	0.006	0.006	0.007	0.005	0.005	0.001	0.009	0.012	0.007	0.005	0.003	0.007	0.004	0.004
M2Ca	0.775	0.774	0.772	0.787	0.796	0.786	0.745	0.747	0.718	0.788	0.774	0.797	0.794	0.841
M2Na	0.009	0.018	0.014	0.019	0.013	0.027	0.013	0.011	0.011	0.01	0.008	0.013	0.014	0.017
M2K	0.001	0	0.002	0.003	0	0.001	0	0.002	0.002	0.001	0	0	0	0.002
Sum_cat	3.999	4	3.998	3.997	4	3.999	4	3.998	3.998	3.999	4	4	4	3.998
WO	40.426	39.79	40.145	41.184	39.043	41.604	38.421	38.798	37.03	41.306	40.849	41.107	41.27	43.871
EN	49.447	47.426	45.439	50.211	53.084	42.411	45.564	47.605	49.067	49.056	49.109	50.785	47.868	49.087
FS	10.127	12.783	14.416	8.605	7.873	15.985	16.015	13.598	13.903	9.638	10.042	8.108	10.862	7.042
Mineral	Срх	Срх	Срх	Cpx	Срх	Срх								

ادامه جدول ۳

Name	BK05.4- 21	BK05.4- 31	BK05.4- 32	BK05.4- 33	BK05.4- 34	BK05.4- 35	BK05.4- 36	BK05.4- 37	BK05.4- 38	BK05.4- 39	BK05.4- 40	BK05.4- 41	BK05.4- 42	BK05.4- 43	BK05.4- 44
Rock- type	Gab .impreg														
SiO2	52.7748	53.1489	53.5192	53.8	53.0642	52.1967	53.2941	52.7013	52.3322	53.743	53.3141	53.3263	53.4905	53.9083	53.9848
TiO2	0.185	0.1265	0.0969	0.1907	0.2465	0.2196	0.0752	0.1325	0.244	0.2322	0.271	0.1686	0.1885	0.1764	0.1556
Al2O3	2.2384	1.6705	1.8179	1.7649	1.9858	1.8205	1.5797	1.8844	2.2779	2.5475	2.5526	2.2887	2.3615	2.4179	2.3679
FeO	4.3533	4.3648	4.6757	4.7186	4.4678	4.5651	4.5134	4.4292	4.4962	5.0653	4.6726	4.7448	4.6909	4.409	4.0649
Cr2O3	0.8148	0.5579	0.7595	0.7752	0.7074	0.9099	0.6969	0.7276	1.0011	0.7942	0.7445	0.8265	0.9077	0.8977	0.9416
MnO	0.1019	0.0595	0.1097	0.1646	0.1474	0.1078	0.0469	0.0344	0.1787	0.1392	0.2032	0.155	0.0813	0.0595	0.1442
NiO	0.0002	0.0079	0.1355	0.0002	0.0236	0.1099	0.0393	0.1461	0.0002	0.0002	0.0002	0.0002	0.002	0.0236	0.0002
MgO	17.8466	18.2057	18.3371	18.0079	17.7572	18.0048	17.9695	18.159	16.4982	17.5526	17.5991	17.9037	17.7146	17.2111	17.3938
CaO	21.0339	20.8684	21.1134	20.9009	20.8966	20.9972	20.8739	21.2237	22.1376	21.1093	20.8968	20.4445	21.6584	21.6975	20.9146
Na2O	0.2473	0.2049	0.2211	0.2373	0.2573	0.259	0.2039	0.222	0.4057	0.1464	0.2227	0.2927	0.2976	0.2962	0.2357
K2O	0.0001	0.0001	0.0001	0.0161	0.006	0.0224	0.0416	0.0001	0.0324	0.0001	0.0001	0.0574	0.0001	0.034	0.0397
Total	99.6	99.22	100.79	100.58	99.56	99.21	99.33	99.66	99.6	101.33	100.48	100.21	101.39	101.13	100.24
TSi	1.927	1.946	1.932	1.949	1.94	1.914	1.952	1.922	1.92	1.937	1.934	1.937	1.922	1.945	1.963
TAl	0.073	0.054	0.068	0.051	0.06	0.079	0.048	0.078	0.08	0.063	0.066	0.063	0.078	0.055	0.037
TFe3	0	0	0	0	0	0.008	0	0	0	0	0	0	0	0	0
M1Al	0.023	0.018	0.009	0.024	0.026	0	0.02	0.003	0.018	0.045	0.043	0.035	0.022	0.048	0.064
M1Ti	0.005	0.003	0.003	0.005	0.007	0.006	0.002	0.004	0.007	0.006	0.007	0.005	0.005	0.005	0.004
M1Fe3	0.033	0.027	0.048	0.012	0.018	0.067	0.02	0.062	0.05	0	0.001	0.019	0.04	0	0
M1Fe2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M1Cr	0.023	0.016	0.022	0.022	0.02	0.026	0.02	0.021	0.029	0.023	0.021	0.024	0.026	0.026	0.027
M1Mg	0.915	0.935	0.915	0.937	0.928	0.898	0.937	0.906	0.896	0.926	0.926	0.918	0.907	0.921	0.904
M1Ni	0	0	0.004	0	0.001	0.003	0.001	0.004	0	0	0	0	0	0.001	0
M2Mg	0.056	0.059	0.072	0.036	0.04	0.087	0.044	0.081	0.006	0.018	0.025	0.051	0.042	0.004	0.039
M2Fe2	0.1	0.106	0.093	0.131	0.118	0.066	0.119	0.073	0.088	0.153	0.14	0.125	0.101	0.133	0.124
M2Mn	0.003	0.002	0.003	0.005	0.005	0.003	0.001	0.001	0.006	0.004	0.006	0.005	0.002	0.002	0.004
M2Ca	0.823	0.819	0.816	0.811	0.819	0.825	0.819	0.829	0.87	0.815	0.812	0.796	0.834	0.839	0.815
M2Na	0.018	0.015	0.015	0.017	0.018	0.018	0.014	0.016	0.029	0.01	0.016	0.021	0.021	0.021	0.017
M2K	0	0	0	0.001	0	0.001	0.002	0	0.002	0	0	0.003	0	0.002	0.002
Sum_cat	4	4	4	3.999	4	3.999	3.998	4	3.998	4	4	3.997	4	3.998	3.998
WO	42.627	42.028	41.922	41.995	42.466	42.25	42.224	42.469	45.416	42.563	42.48	41.569	43.289	44.16	43.209
EN	50.323	51.016	50.66	50.343	50.21	50.408	50.575	50.558	47.094	49.243	49.779	50.651	49.264	48.74	50
FS	7.05	6.956	7.419	7.662	7.324	7.341	7.201	6.972	7.49	8.194	7.741	7.779	7.447	7.1	6.791
Mineral	Cpx														

Name	BS05.16-6	BS05.16-7	BS05.16-8	BS05.16-9	BSU-14-6	BSU15-1	BSU15-10	BSU15-4	BSU15-6	BSU15-9	BK05.4- 16	BK05.4- 17	BK05.4- 18	BK05.4- 19
Rock-type	diabasic dike	diabasic dike	diabasic dike	diabasic dike	Peridotite	Peridotite	Peridotite	Peridotite	Peridotite	Peridotite	Gab .impreg	Gab .impreg	Gab .impreg	Gab .impreg
SiO2	52.874	53.108	51.94	52.113	53.9047	52.0126	52.5532	52.7098	53.4935	53.0271	52.6254	52.3775	52.143	52.4691
TiO2	0.202	0.193	0.191	0.298	0.0538	0.2023	0.2274	0.2533	0.0948	0.1376	0.064	0.0002	0.1222	0.1446
Al2O3	2.028	1.738	2.568	2.046	2.5512	4.7582	4.4611	4.6739	4.4331	3.6134	1.9336	1.9416	1.9259	2.0548
FeO	6.69	6.382	6.305	8.245	1.8575	2.1057	2.2156	2.4319	2.5417	2.3462	4.4992	4.2918	4.3292	4.259
Cr2O3	0.335	0.232	0.335	0.001	0.6238	1.0062	0.8197	0.9062	0.8987	0.6637	0.7562	0.7884	0.67	0.8552
MnO	0.103	0.188	0.109	0.148	0.167	0.109	0.1642	0.2686	0.1143	0.0484	0.1954	0.0626	0.1268	0.1835
NiO	0.192	0	0.151	0	0.0002	0.0843	0.0298	0.0002	0.1069	0.0002	0.0346	0.098	0.0157	0.0002
MgO	16.889	17.097	16.214	15.888	17.2995	15.9886	16.3045	16.336	16.6993	16.8459	17.4615	17.7005	17.6354	17.7926
CaO	19.962	19.97	20.001	20.611	23.0728	23.8157	23.187	23.0633	22.0265	23.2268	20.8375	21.1698	21.0453	21.5081
Na2O	0.149	0.184	0.193	0.219	0.3159	0.3901	0.4162	0.4051	0.4895	0.3456	0.1998	0.2096	0.2094	0.264
K2O	0	0.004	0.038	0.031	0.0001	0.0793	0.0001	0.0295	0.0001	0.0001	0.0252	0.0292	0.0001	0.0136
Total	99.42	99.1	98.05	99.6	99.85	100.55	100.38	101.08	100.9	100.26	98.63	98.67	98.22	99.54
TSi	1.952	1.963	1.944	1.93	1.956	1.88	1.901	1.895	1.923	1.918	1.944	1.931	1.931	1.917
TAI	0.048	0.037	0.056	0.07	0.044	0.12	0.099	0.105	0.077	0.082	0.056	0.069	0.069	0.083
TFe3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M1Al	0.04	0.039	0.057	0.019	0.065	0.082	0.091	0.093	0.111	0.072	0.028	0.015	0.015	0.005
M1Ti	0.006	0.005	0.005	0.008	0.001	0.005	0.006	0.007	0.003	0.004	0.002	0	0.003	0.004
M1Fe3	0	0	0	0.051	0	0.029	0.001	0.002	0	0.007	0.017	0.048	0.043	0.064
M1Fe2	0.01	0.007	0.019	0.044	0	0	0	0	0	0	0	0	0	0
M1Cr	0.01	0.007	0.01	0	0.018	0.029	0.023	0.026	0.026	0.019	0.022	0.023	0.02	0.025
M1Mg	0.929	0.942	0.905	0.877	0.916	0.852	0.877	0.873	0.858	0.898	0.93	0.912	0.919	0.902
M1Ni	0.006	0	0.005	0	0	0.002	0.001	0	0.003	0	0.001	0.003	0	0
M2Mg	0	0	0	0	0.019	0.009	0.002	0.003	0.037	0.01	0.032	0.061	0.054	0.067
M2Fe2	0.197	0.19	0.179	0.16	0.056	0.035	0.066	0.071	0.076	0.064	0.122	0.085	0.092	0.066
M2Mn	0.003	0.006	0.003	0.005	0.005	0.003	0.005	0.008	0.003	0.001	0.006	0.002	0.004	0.006
M2Ca	0.789	0.791	0.802	0.818	0.897	0.922	0.899	0.888	0.849	0.9	0.825	0.836	0.835	0.842
M2Na	0.011	0.013	0.014	0.016	0.022	0.027	0.029	0.028	0.034	0.024	0.014	0.015	0.015	0.019
M2K	0	0	0.002	0.001	0	0.004	0	0.001	0	0	0.001	0.001	0	0.001
Sum_cat	4	4	3.998	3.999	4	3.996	4	3.999	4	4	3.999	3.999	4	3.999
WO	40.936	40.848	42.047	41.833	47.353	49.832	48.577	48.145	46.532	47.855	42.7	43.03	42.895	43.246
EN	48.189	48.659	47.426	44.868	49.4	46.548	47.528	47.449	49.086	48.293	49.787	50.06	50.013	49.778
FS	10.875	10.493	10.527	13.299	3.247	3.619	3.895	4.406	4.382	3.852	7.513	6.91	7.092	6.976
Mineral	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx

زمین شیمی و سنگ شناسی توالی گومانهای آن افیکر لیاتهای کائین

ادامه جدول ۳

Name	BK05.4- 45	BK05.4- 46	BK05.4- 47	BK05.4- 48	BK05.4- 49	BK05.4- 50	BK05.4- 51	BK05.4- 52	BK05.4- 53	BK05.4- 54	BK05.4- 55	BK05.4- 56	BK05.4- 57	BK05.4- 62	BK05.4- 63
Rock- type	Gab .impreg														
SiO2	53.1165	53.3151	53.1556	52.9043	51.1012	51.6028	53.5307	52.863	52.7987	52.9395	51.1483	53.5945	52.5181	53.1128	52.9079
TiO2	0.1476	0.1646	0.2442	0.1709	0.2973	0.4075	0.1714	0.1399	0.1915	0.1772	0.2732	0.1705	0.2608	0.1584	0.2607
Al2O3	2.3268	2.4379	2.3686	2.3229	2.9662	2.861	0.8315	1.869	2.3669	2.162	3.176	1.4109	2.4468	2.39	2.4194
FeO	4.5363	4.4197	4.5874	4.4781	4.6352	4.8887	3.3902	4.1001	4.4437	4.4827	4.5992	4.1865	4.7548	4.7154	4.7067
Cr2O3	0.9933	0.9465	0.866	0.9345	0.7851	0.929	0.4017	0.6288	0.8385	0.774	0.8279	0.5702	0.8443	0.9162	0.9994
MnO	0.0031	0.1499	0.0002	0.1172	0.1921	0.0499	0.1664	0.108	0.0892	0.0815	0.0031	0.2411	0.0859	0.0344	0.1281
NiO	0.0141	0.0002	0.0536	0.0002	0.0047	0.1883	0.0002	0.0267	0.1273	0.1197	0.0141	0.1069	0.0002	0.0267	0.022
MgO	17.8227	17.5378	17.5007	17.5029	16.8012	16.8357	17.1426	17.1142	17.2655	17.4562	17.4914	16.9788	17.8667	17.1944	17.6846
CaO	21.0739	21.375	21.1218	21.13	21.3398	21.5199	24.1306	21.9909	21.554	21.7449	19.9648	22.608	20.7742	21.241	21.286
Na2O	0.3028	0.2354	0.3474	0.251	0.4438	0.3963	0.1348	0.1254	0.2683	0.2043	0.8038	0.3447	0.1472	0.2085	0.2259
K2O	0.086	0.0603	0.053	0.0304	0.0359	0.0279	0.0001	0.0001	0.0296	0.0088	0.0817	0.0623	0.0001	0.0208	0.0268
Total	100.42	100.64	100.3	99.84	98.6	99.71	99.9	98.97	99.97	100.15	98.38	100.27	99.7	100.02	100.67
TSi	1.924	1.931	1.93	1.931	1.887	1.889	1.954	1.948	1.926	1.927	1.882	1.951	1.919	1.939	1.916
TAl	0.076	0.069	0.07	0.069	0.113	0.111	0.036	0.052	0.074	0.073	0.118	0.049	0.081	0.061	0.084
TFe3	0	0	0	0	0	0	0.011	0	0	0	0	0	0	0	0
M1Al	0.024	0.035	0.032	0.03	0.016	0.013	0	0.03	0.027	0.02	0.019	0.011	0.024	0.041	0.019
M1Ti	0.004	0.004	0.007	0.005	0.008	0.011	0.005	0.004	0.005	0.005	0.008	0.005	0.007	0.004	0.007
M1Fe3	0.04	0.018	0.027	0.021	0.09	0.078	0.035	0.005	0.032	0.035	0.121	0.04	0.029	0	0.038
M1Fe2	0	0	0	0	0	0	0.016	0.002	0	0	0	0.004	0	0	0
M1Cr	0.028	0.027	0.025	0.027	0.023	0.027	0.012	0.018	0.024	0.022	0.024	0.016	0.024	0.026	0.029
M1Mg	0.903	0.916	0.909	0.917	0.863	0.866	0.933	0.94	0.907	0.914	0.828	0.921	0.916	0.927	0.906
M1Ni	0	0	0.002	0	0	0.006	0	0.001	0.004	0.004	0	0.003	0	0.001	0.001
M2Mg	0.059	0.031	0.039	0.036	0.063	0.053	0	0	0.032	0.033	0.131	0	0.057	0.009	0.049
M2Fe2	0.097	0.116	0.113	0.115	0.053	0.072	0.042	0.119	0.103	0.101	0.021	0.084	0.116	0.144	0.104
M2Mn	0	0.005	0	0.004	0.006	0.002	0.005	0.003	0.003	0.003	0	0.007	0.003	0.001	0.004
M2Ca	0.818	0.829	0.822	0.826	0.844	0.844	0.944	0.868	0.842	0.848	0.787	0.882	0.813	0.831	0.826
M2Na	0.021	0.017	0.024	0.018	0.032	0.028	0.01	0.009	0.019	0.014	0.057	0.024	0.01	0.015	0.016
M2K	0.004	0.003	0.002	0.001	0.002	0.001	0	0	0.001	0	0.004	0.003	0	0.001	0.001
Sum_cat	3.996	3.997	3.998	3.999	3.998	3.999	4	4	3.999	4	3.996	3.997	4	3.999	3.999
WO	42.646	43.317	43.059	43.06	44.012	44.098	47.538	44.798	43.884	43.843	41.685	45.498	42.042	43.462	42.857
EN	50.183	49.451	49.641	49.628	48.213	48.002	46.989	48.509	48.911	48.972	50.815	47.543	50.31	48.952	49.542
FS	7.17	7.231	7.3	7.312	7.775	7.9	5.472	6.693	7.205	7.185	7.501	6.96	7.648	7.587	7.601
Mineral	Cpx														

Name	BK05.4- 64	BK05.4- 65	BK05.4- 49	BK05.4- 50	BK05.4- 51	BK05.4- 52	BK05.4- 53	BK05.4- 54	BK05.4- 55	BK05.4- 56	BK05.4- 57	BK05.4- 62	BK05.4- 63	BK05.4- 64	BK05.4- 65	BK05.4- 66
Rock- type	Gab .impreg															
SiO2	52.2283	52.6911	51.1012	51.6028	53.5307	52.863	52.7987	52.9395	51.1483	53.5945	52.5181	53.1128	52.9079	52.2283	52.6911	52.5846
TiO2	0.2022	0.2451	0.2973	0.4075	0.1714	0.1399	0.1915	0.1772	0.2732	0.1705	0.2608	0.1584	0.2607	0.2022	0.2451	0.1014
Al2O3	2.4701	2.3323	2.9662	2.861	0.8315	1.869	2.3669	2.162	3.176	1.4109	2.4468	2.39	2.4194	2.4701	2.3323	2.4412
FeO	4.8777	4.6644	4.6352	4.8887	3.3902	4.1001	4.4437	4.4827	4.5992	4.1865	4.7548	4.7154	4.7067	4.8777	4.6644	4.7186
Cr2O3	1.0061	0.9216	0.7851	0.929	0.4017	0.6288	0.8385	0.774	0.8279	0.5702	0.8443	0.9162	0.9994	1.0061	0.9216	1.019
MnO	0.0984	0.1891	0.1921	0.0499	0.1664	0.108	0.0892	0.0815	0.0031	0.2411	0.0859	0.0344	0.1281	0.0984	0.1891	0.1847
NiO	0.1161	0.0002	0.0047	0.1883	0.0002	0.0267	0.1273	0.1197	0.0141	0.1069	0.0002	0.0267	0.022	0.1161	0.0002	0.0205
MgO	16.8649	17.3504	16.8012	16.8357	17.1426	17.1142	17.2655	17.4562	17.4914	16.9788	17.8667	17.1944	17.6846	16.8649	17.3504	17.1771
CaO	21.483	21.4088	21.3398	21.5199	24.1306	21.9909	21.554	21.7449	19.9648	22.608	20.7742	21.241	21.286	21.483	21.4088	21.2698
Na2O	0.3318	0.253	0.4438	0.3963	0.1348	0.1254	0.2683	0.2043	0.8038	0.3447	0.1472	0.2085	0.2259	0.3318	0.253	0.2546
K2O	0.0643	0.0292	0.0359	0.0279	0.0001	0.0001	0.0296	0.0088	0.0817	0.0623	0.0001	0.0208	0.0268	0.0643	0.0292	0.0276
Total	99.74	100.09	98.6	99.71	99.9	98.97	99.97	100.15	98.38	100.27	99.7	100.02	100.67	99.74	100.09	99.8
TSi	1.913	1.921	1.887	1.889	1.954	1.948	1.926	1.927	1.882	1.951	1.919	1.939	1.916	1.913	1.921	1.923
TAI	0.087	0.079	0.113	0.111	0.036	0.052	0.074	0.073	0.118	0.049	0.081	0.061	0.084	0.087	0.079	0.077
TFe3	0	0	0	0	0.011	0	0	0	0	0	0	0	0	0	0	0
M1Al	0.019	0.021	0.016	0.013	0	0.03	0.027	0.02	0.019	0.011	0.024	0.041	0.019	0.019	0.021	0.028
M1Ti	0.006	0.007	0.008	0.011	0.005	0.004	0.005	0.005	0.008	0.005	0.007	0.004	0.007	0.006	0.007	0.003
M1Fe3	0.054	0.038	0.09	0.078	0.035	0.005	0.032	0.035	0.121	0.04	0.029	0	0.038	0.054	0.038	0.033
M1Fe2	0	0	0	0	0.016	0.002	0	0	0	0.004	0	0	0	0	0	0
M1Cr	0.029	0.027	0.023	0.027	0.012	0.018	0.024	0.022	0.024	0.016	0.024	0.026	0.029	0.029	0.027	0.029
M1Mg	0.889	0.908	0.863	0.866	0.933	0.94	0.907	0.914	0.828	0.921	0.916	0.927	0.906	0.889	0.908	0.906
M1Ni	0.003	0	0	0.006	0	0.001	0.004	0.004	0	0.003	0	0.001	0.001	0.003	0	0.001
M2Mg	0.032	0.034	0.063	0.053	0	0	0.032	0.033	0.131	0	0.057	0.009	0.049	0.032	0.034	0.03
M2Fe2	0.095	0.104	0.053	0.072	0.042	0.119	0.103	0.101	0.021	0.084	0.116	0.144	0.104	0.095	0.104	0.111
M2Mn	0.003	0.006	0.006	0.002	0.005	0.003	0.003	0.003	0	0.007	0.003	0.001	0.004	0.003	0.006	0.006
M2Ca	0.843	0.836	0.844	0.844	0.944	0.868	0.842	0.848	0.787	0.882	0.813	0.831	0.826	0.843	0.836	0.833
M2Na	0.024	0.018	0.032	0.028	0.01	0.009	0.019	0.014	0.057	0.024	0.01	0.015	0.016	0.024	0.018	0.018
M2K	0.003	0.001	0.002	0.001	0	0	0.001	0	0.004	0.003	0	0.001	0.001	0.003	0.001	0.001
Sum_cat	3.997	3.999	3.998	3.999	4	4	3.999	4	3.996	3.997	4	3.999	3.999	3.997	3.999	3.999
WO	43.992	43.39	44.012	44.098	47.538	44.798	43.884	43.843	41.685	45.498	42.042	43.462	42.857	43.992	43.39	43.409
EN	48.052	48.928	48.213	48.002	46.989	48.509	48.911	48.972	50.815	47.543	50.31	48.952	49.542	48.052	48.928	48.777
FS	7.956	7.682	7.775	7.9	5.472	6.693	7.205	7.185	7.501	6.96	7.648	7.587	7.601	7.956	7.682	7.815
Mineral	Срх	Срх	Срх	Cpx	Cpx	Cpx	Cpx	Срх	Cpx	Срх						

ادامه جدول ۳

Name	BK05.4- 67	BK05.4- 68	BK05.4- 69	BK05.4- 70	BK05.4- 71	BK05.4- 72	BK05.4- 73	BK05.4- 74	BK05.4- 75	BK05.4- 76	BK05.4- 77	BK05.4- 78	BK05.4- 79	BK05.4- 90	BK05.4- 91
Rock-type	Gab .impreg														
SiO2	53.0478	52.977	52.6508	52.7612	51.8016	52.7201	52.5982	52.6507	51.8686	51.9965	52.4816	52.8093	52.8771	53.513	52.2092
TiO2	0.2002	0.2113	0.144	0.194	0.3009	0.3011	0.1862	0.1992	0.2199	0.1391	0.2316	0.1529	0.2634	0.222	0.2016
Al2O3	2.6908	2.6881	2.5488	2.1851	2.6326	2.615	2.6146	2.5395	2.4073	2.5681	2.5316	2.587	2.683	2.1669	2.3306
FeO	4.6462	4.7664	4.8832	4.7313	4.5882	4.7885	4.4871	4.6194	4.5521	4.7748	4.5813	4.8195	4.7408	4.7407	4.8516
Cr2O3	1.0309	0.9823	1.0069	0.7888	0.967	1.0228	1.0447	1.0668	0.9028	1.053	0.9037	0.9943	0.9644	0.9134	0.9458
MnO	0.0094	0.1939	0.281	0.2281	0.0844	0.1328	0.1672	0.1406	0.1392	0.1015	0.0922	0.0375	0.1108	0.1267	0.0689
NiO	0.0581	0.0754	0.1146	0.0002	0.11	0.0002	0.0002	0.0002	0.0002	0.0002	0.2232	0.121	0.0002	0.0126	0.0002
MgO	17.5059	17.4073	17.6469	17.6373	17.7423	16.9346	17.8066	17.5458	17.2362	17.2608	17.3324	17.2967	17.7782	17.7941	17.9515
CaO	21.4124	21.3845	20.8821	21.0571	21.5171	21.0666	21.0286	21.3496	21.4645	20.9639	21.2092	20.8634	21.0255	20.9177	20.8037
Na2O	0.3009	0.2797	0.2377	0.2285	0.2591	0.3147	0.3457	0.2276	0.1923	0.2486	0.3018	0.2466	0.2375	0.2983	0.1653
K2O	0.0001	0.0112	0.0224	0.0216	0.0001	0.0001	0.0001	0.0436	0.0084	0.0001	0.0792	0.0001	0.0296	0.0617	0.0265
Total	100.9	100.98	100.42	99.83	100	99.9	100.28	100.38	98.99	99.11	99.97	99.93	100.71	100.77	99.55
TSi	1.916	1.914	1.912	1.926	1.885	1.928	1.908	1.912	1.911	1.913	1.914	1.929	1.913	1.935	1.909
TAI	0.084	0.086	0.088	0.074	0.113	0.072	0.092	0.088	0.089	0.087	0.086	0.071	0.087	0.065	0.091
TFe3	0	0	0	0	0.002	0	0	0	0	0	0	0	0	0	0
M1Al	0.031	0.029	0.021	0.02	0	0.041	0.019	0.021	0.015	0.024	0.023	0.04	0.027	0.027	0.01
M1Ti	0.005	0.006	0.004	0.005	0.008	0.008	0.005	0.005	0.006	0.004	0.006	0.004	0.007	0.006	0.006
M1Fe3	0.034	0.038	0.047	0.038	0.088	0.007	0.057	0.043	0.049	0.041	0.049	0.012	0.036	0.023	0.055
M1Fe2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M1Cr	0.029	0.028	0.029	0.023	0.028	0.03	0.03	0.031	0.026	0.031	0.026	0.029	0.028	0.026	0.027
M1Mg	0.899	0.898	0.895	0.914	0.873	0.914	0.889	0.9	0.903	0.9	0.889	0.912	0.902	0.917	0.902
M1Ni	0.002	0.002	0.003	0	0.003	0	0	0	0	0	0.007	0.004	0	0	0
M2Mg	0.043	0.04	0.06	0.045	0.09	0.009	0.074	0.05	0.043	0.047	0.053	0.03	0.056	0.042	0.076
M2Fe2	0.107	0.106	0.101	0.107	0.05	0.139	0.079	0.097	0.091	0.106	0.09	0.136	0.107	0.12	0.093
M2Mn	0	0.006	0.009	0.007	0.003	0.004	0.005	0.004	0.004	0.003	0.003	0.001	0.003	0.004	0.002
M2Ca	0.829	0.828	0.813	0.824	0.839	0.825	0.817	0.831	0.847	0.826	0.829	0.816	0.815	0.81	0.815
M2Na	0.021	0.02	0.017	0.016	0.018	0.022	0.024	0.016	0.014	0.018	0.021	0.017	0.017	0.021	0.012
M2K	0	0.001	0.001	0.001	0	0	0	0.002	0	0	0.004	0	0.001	0.003	0.001
Sum_cat	4	3.999	3.999	3.999	4	4	4	3.998	4	4	3.996	4	3.999	3.997	3.999
WO	43.341	43.22	42.212	42.565	43.162	43.461	42.534	43.148	43.707	42.97	43.307	42.822	42.433	42.278	41.924
EN	49.303	48.951	49.634	49.606	49.52	48.611	50.114	49.34	48.834	49.227	49.243	49.396	49.922	50.041	50.335
FS	7.356	7.829	8.154	7.83	7.318	7.928	7.352	7.512	7.459	7.804	7.45	7.782	7.645	7.681	7.741
Mineral	Срх	Срх	Cpx	Cpx	Срх	Cpx	Срх								

جدول۴- نتایج تجزیه کانیایی اولیوینهای موجود در سنگهای مختلف افیولیتهای نائین

Sample	BSU14-1	BSU14-10	BSU14-11	BSU14-12	BSU14-13	BSU14-14	BSU14-15	BSU14-16	BSU14-17	BSU14-2	BSU14-3	BSU14-4	BSU14-5	BSU14-7
Rock type	Peridotite													
SiO2	40.0995	41.1416	40.5433	41.2313	41.1579	41.3414	41.1188	40.7693	40.6763	40.2745	40.7453	40.6362	40.924	40.9398
TiO2	0.0002	0.0119	0.0002	0.0002	0.0002	0.1045	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
A12O3	0.0052	0.0228	0.0003	0.0243	0.0003	0.0237	0.0189	0.0003	0.0003	0.0003	0.0003	0.0003	0.1635	0.0003
FeO	9.0068	8.8791	8.9105	9.2308	9.0926	8.7395	9.2136	8.9478	8.9092	9.163	9.3715	9.2312	8.0535	9.3151
MnO	0.0094	0.0607	0.1789	0.2102	0.1043	0.1044	0.0002	0.2565	0.1338	0.1948	0.2132	0.1851	0.198	0.0358
MgO	49.0475	49.0842	49.0037	49.0428	49.2468	49.037	49.6836	48.936	48.5359	48.4938	48.718	48.6894	49.7416	48.7585
CaO	0.113	0.0041	0.0111	0.0292	0.0002	0.04	0.0002	0.0534	0.0424	0.0499	0.0193	0.0419	0.3903	0.0002
Na2O	0.0565	0.0755	0.0506	0.0004	0.0429	0.0276	0.0927	0.0003	0.0496	0.1281	0.1506	0.04	0.4918	0.0616
K2O	0.0325	0.0001	0.0001	0.0001	0.0471	0.0033	0.0133	0.0001	0.0001	0.0054	0.0001	0.0029	0.0983	0.0233
NiO	0.3822	0.4369	0.0538	0.3659	0.3818	0.4421	0.5601	0.3525	0.3545	0.2457	0.361	0.337	0.5733	0.2848
Cr2O3	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0099	0.0002	0.0002	0.0002	0.0499	0.0002	0.0002	0.0541
Total	98.753	99.7171	98.7527	100.1354	100.0743	99.8637	100.7115	99.3166	98.7025	98.5559	99.6294	99.1644	100.6347	99.4737
Si	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Al	0	0.001	0	0.001	0	0.001	0.001	0	0	0	0	0	0.005	0
Ti	0	0	0	0	0	0.002	0	0	0	0	0	0	0	0
Fe2	0.188	0.18	0.184	0.187	0.185	0.177	0.187	0.184	0.183	0.19	0.192	0.19	0.165	0.19
Mn	0	0.001	0.004	0.004	0.002	0.002	0	0.005	0.003	0.004	0.004	0.004	0.004	0.001
Mg	1.823	1.779	1.802	1.773	1.784	1.769	1.802	1.79	1.778	1.796	1.783	1.786	1.813	1.775
Ca	0.003	0	0	0.001	0	0.001	0	0.001	0.001	0.001	0.001	0.001	0.01	0
Na	0.003	0.004	0.002	0	0.002	0.001	0.004	0	0.002	0.006	0.007	0.002	0.023	0.003
К	0.001	0	0	0	0.001	0	0	0	0	0	0	0	0.003	0.001
Ni	0.008	0.009	0.001	0.007	0.007	0.009	0.011	0.007	0.007	0.005	0.007	0.007	0.011	0.006
Cations	3.026	2.974	2.993	2.973	2.981	2.962	3.005	2.987	2.974	3.002	2.994	2.99	3.034	2.976
Fa%	0.09	0.09	0.09	0.1	0.09	0.09	0.09	0.09	0.09	0.1	0.1	0.1	0.08	0.1
Fo%	0.91	0.91	0.91	0.9	0.91	0.91	0.91	0.91	0.91	0.9	0.9	0.9	0.92	0.9

زمین شیمی و سنگ شناسی توالی گورانهای را افیرانیا های کائیر

ادامه جدول ۴

Sample	BSU14-8	BSU14-9	BSU15-1	BSU15-2	BK05.4-1	BK05.4-10	BK05.4-11	BK05.4	-12	BK05.4-13	BK05.4-2	BK05.4-3	BK05.4-4	BK05.4-5
Rock type	Peridotite	Peridotite	Peridotite	Peridotite	gab.impreg	gab.impreg	gab.impreg	gab.imp	oreg	gab.impreg	gab.impreg	gab.impreg	gab.impreg	gab.impreg
SiO2	40.9665	41.1205	39.588	40.1902	39.1082	40.3049	39.461	40.2402	2	39.4734	39.6906	39.7719	39.775	39.086
TiO2	0.0002	0.0276	0.0495	0.0301	0.0011	0.0002	0.0002	0.0002	- î	0.0002	0.0002	0.0002	0.0315	0.0911
A12O3	0.0236	0.0008	0.0003	0.0003	0.0329	0.0397	0.0152	0.0003	- i	0.0003	0.147	0.0003	0.0003	0.0149
FeO	8.9943	8.8622	9.6393	9.0259	15.5434	15.4693	15,1965	15.8369)	15.4173	14.642	15,7679	15,1666	15.3894
MnO	0.1805	0.0466	0.1037	0.0588	0.2727	0.1839	0.3204	0.3369		0.2301	0.2915	0.2404	0.2944	0.2099
MgO	49 3178	48 9477	49 7553	49 6219	44 207	43 7956	44 6517	43 6934	1	44 9236	43 5191	44 6396	44.0616	44 2007
CaO	0.0029	0.0037	0.0393	0.0421	0.1808	0.1168	0.1266	0.109	·	0.1157	0.2257	0.2092	0.1692	0.0896
Na2O	0.0343	0.0191	0.0445	0.0257	0.0785	0.1033	0.0885	0.1512		0.0897	0.0489	0.071	0.0265	0.0000
K20	0.0379	0.015	0.0021	0.0001	0.0703	0.0271	0.0205	0.0378		0.0000	0.0103	0.016	0.0205	0.0571
NiO	0.03754	0.4260	0.2615	0.4467	0.0001	0.0271	0.0205	0.0576	-+	0.3630	0.2634	0.3032	0.163	0.0071
Cr2O3	0.2734	0.4209	0.0256	0.014	0.2444	0.2902	0.2242	0.0315		0.0077	0.2034	0.0902	0.0353	0.3087
Total	0.0002	0.0495	0.0230	0.014	0.0002	100 2272	100 1226	100 600		100 7022	0.0002	101 1000	0.0333	0.0002
10tai	99.0550	99.3190	99.3091	99.4336	99.0095	100.3372	100.1220	100.099	<u> </u>	100.7025	90.0309	101.1099	99.7082	99.4479
 	1	1	1	0	1	1	1	1		0	0.004	1	1	
AI	0.001	0	0	0	0.001	0.001	0	0		0	0.004	0	0	0
11 E-2	0	0.001	0.001	0.001	0 222	0 221	0 222	0 220		0 227	0 208	0 221	0.001	0.002
rez Ma	0.184	0.18	0.204	0.188	0.332	0.321	0.322	0.329		0.005	0.308	0.331	0.319	0.329
IVIN M-	0.004	0.001	0.002	0.001	0.006	0.004	0.007	0.00/		0.005	0.006	0.005	0.006	0.005
Mg	1./94	1.//4	1.8/4	1.84	1.685	1.619	1.68/	1.619		1.096	1.634	1.6/3	1.652	1.685
Ca	0	0	0.001	0.001	0.005	0.003	0.003	0.003		0.003	0.006	0.006	0.005	0.002
Na	0.002	0.001	0.002	0.001	0.004	0.005	0.004	0.007		0.004	0.002	0.003	0.001	0
K	0.001	0	0	0	0	0.001	0.001	0.001		0	0	0.001	0.001	0.002
Ni	0.005	0.008	0.005	0.009	0.005	0.006	0.005	0.005		0.007	0.005	0.008	0.003	0.006
Cations	2.991	2.965	3.089	3.041	3.038	2.96	3.029	2.971		3.042	2.965	3.027	2.988	3.031
Fa%	0.09	0.09	0.1	0.09	0.16	0.17	0.16	0.17		0.16	0.16	0.17	0.16	0.16
Fo%	0.91	0.91	0.9	0.91	0.84	0.83	0.84	0.83		0.84	0.84	0.83	0.84	0.84
Sample	BK05 4-58	BK05 4-59	BK05 4-6	BK05 4-	60 BK054	I-61 BK05	4-7 BK()5 4-8	BK05	54-83 B	K05 4-84	BK054-85	BK05 4-86	BK05 4-87
Rock type	gab impreg	gah impreg	gab impre	g gah imp	eg gab im	oreg gab in	npreg gab	impreg	gab ir	mpreg g	ah impreg	gah impreg	gah impreg	gah impreg
SiO2	30.0867	28 2825	40.0503	30 570/	38 840) 30.10	M 30.6	703	30.00	102 10	0.435	30.0033	40.0715	30 /770
5102	0.019	0.0002	40.0000	0,0002	0.0002	0.000	0.01	14	39.90	11 0	0.435	0.0102	40.0715	0.0029
1102	0.018	0.0002	0.0002	0.0002	0.0002	0.000	2 0.01	14	0.007	0 0	.041	0.0102	0.015	0.0038
AI203	0.0178	0.0042	0.0157	0.0112	0.0017	0.000.	5 0.00	03	0.025	0.	.0226	0.0137	0.0468	0.0414
FeO	16.0545	15.8009	14.7663	16.3653	17.017	5 15.89	13 15.2	943	15.10	141 14	4.4801	15.3023	14.872	15.468
MnO	0.2221	0.2408	0.2593	0.2628	0.1849	0.250	0.34	51	0.242	.6 0.	.3174	0.3694	0.2212	0.3019
MgO	43.5928	43.6845	44.2528	44.2033	43.756	7 44.512	29 44.2	219	45.27	68 44	4.8549	44.4477	44.2312	45.3301
CaO	0.1184	0.1015	0.106	0.1246	0.0975	0.2022	2 0.07	11	0.079	06 0.	.1785	0.1395	0.163	0.1809
Na2O	0.0849	0.0685	0.0099	0.0726	0.0694	0.086	5 0.04	24	0.171	9 0.	.0997	0.1229	0.1214	0.1261
K20	0.0501	0.0206	0.0588	0.0001	0.0397	0.000	0.10	4	0.061	7 0.	.0615	0.0386	0.0856	0.0567
NiO	0.2398	0.2621	0.2713	0.3316	0.205	0.241	7 0.29	02	0.273	1 0	.0582	0.2711	0.0989	0.3197
Cr2O3	0.0104	0.0002	0.0157	0.0146	0.0002	0.000	2 0.04	66	0.024	.9 0	0002	0.0012	0.0249	0.0568
Total	99.4955	98.467	99.8063	100.965	7 100.21	1 100.29	259 100	1066	101 1	768 10	00 5491	100 6199	99.9495	101 3633
c;	1	1	1	1 1	100.21	100.20	1 1	1000	1	1	00.3771	1	1	1
 	1 0.001	1	0	1	1		1		1	1	001	0	1	1
Al	0.001	0	0	0	0	0	0		0.001	0.	.001	0	0.001	0.001
11	0	0	0	0	0	0	0		0	0.	.001	0	0	0
Fe2	0.344	0.345	0.308	0.346	0.367	0.34	0.32	3	0.317	0.	.3	0.321	0.31	0.328
Mn	0.005	0.005	0.005	0.006	0.004	0.005	0.00	7	0.005	0.	.007	0.008	0.005	0.006
Mg	1.663	1.701	1.648	1.665	1.68	1.698	1.66	2	1.692	1.	.654	1.661	1.645	1.712
Ca	0.003	0.003	0.003	0.003	0.003	0.006	0.00	2	0.002	0.	.005	0.004	0.004	0.005
Na	0.004	0.003	0	0.004	0.003	0.004	0.00	2	0.008	0.	.005	0.006	0.006	0.006
К	0.002	0.001	0.002	0	0.001	0	0.00	3	0.002	0	.002	0.001	0.003	0.002
Ni	0.005	0.006	0.005	0.007	0.004	0.005	0.00	6	0.006	0.	001	0.005	0.002	0.007
Cations	3.005	3.064	2 071	3 031	3.062	3 059	3.00	5	3.032	0.	076	3.006	2.076	3.067
	0.17	0.17	2.7/1	0.17	0.10	5.056	3.00.	5	0.10	2.	15	0.16	0.16	0.16
Fa%	0.17	0.17	0.10	0.17	0.18	0.17	0.16		0.10	0.	.1.3	0.10	0.10	0.10
E0%	0.02	1 1 1 1 2												
10/0	0.83	0.83	0.84	0.83	0.82	0.83	0.84		0.84	0.	85	0.84	0.84	0.84

Sample	BK05.4-9	BKSH- 11-1	BKSH- 11-10	BKSH- 11-11	BKSH- 11-12	BKSH- 11-13	BKSH- 11-14	BKSH- 11-15	BKSH- 11-16	BKSH- 11-17	BKSH- 11-18	BKSH- 11-19	BKSH- 11-2
Rock type	gab.impreg	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite
SiO2	39.4333	40.2327	40.2753	40.4535	40.2258	40.4899	40.5332	40.2315	40.1959	39.194	39.7515	40.1116	40.0763
TiO2	0.0141	0.0174	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0284	0.0002
Al2O3	0.0147	0.0703	0.0003	0.0656	0.0003	0.0071	0.0003	0.0057	0.0454	0.0003	0.0053	0.0003	0.0036
FeO	15.1449	13.1417	13.283	12.8326	13.5233	13.903	13.1458	13.866	13.4282	13.5275	13.4701	13.219	13.9027
MnO	0.2303	0.099	0.2596	0.2104	0.2334	0.1543	0.1979	0.0726	0.176	0.3287	0.4257	0.0587	0.182
MgO	45.1575	45.5472	45.9505	45.232	46.0972	45.6945	45.4268	45.0484	45.5355	45.3436	45.2266	45.6339	45.2078
CaO	0.1142	0.122	0.0572	0.1068	0.1039	0.0968	0.1194	0.1095	0.067	0.1306	0.0282	0.0254	0.0775
Na2O	0.0709	0.0003	0.0916	0.0891	0.0107	0.0303	0.0394	0.0334	0.0003	0.0465	0.1266	0.0756	0.0003
K2O	0.0045	0.012	0.0037	0.0108	0.0592	0.0001	0.0431	0.0001	0.031	0.0227	0.0001	0.0368	0.0001
NiO	0.1821	0.2842	0.2161	0.1262	0.3456	0.3688	0.1893	0.164	0.4714	0.0002	0.2063	0.1404	0.1071
Cr2O3	0.0029	0.0002	0.0002	0.0399	0.0002	0.0708	0.0002	0.0004	0.0338	0.0004	0.0002	0.0002	0.0312
Total	100.3694	99.527	100.1377	99.1671	100.5998	100.8158	99.6956	99.5318	99.9847	98.5947	99.2408	99.3303	99.5888
Si	1	1	1	1	1	1	1	1	1	1	1	1	1
Al	0	0.002	0	0.002	0	0	0	0	0.001	0	0	0	0
Ti	0	0	0	0	0	0	0	0	0	0	0	0.001	0
Fe2	0.321	0.273	0.276	0.265	0.281	0.287	0.271	0.288	0.279	0.289	0.283	0.276	0.29
Mn	0.005	0.002	0.005	0.004	0.005	0.003	0.004	0.002	0.004	0.007	0.009	0.001	0.004
Mg	1.708	1.688	1.702	1.668	1.708	1.683	1.672	1.668	1.688	1.724	1.696	1.696	1.682
Ca	0.003	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.002	0.004	0.001	0.001	0.002
Na	0.003	0	0.004	0.004	0.001	0.001	0.002	0.002	0	0.002	0.006	0.004	0
K	0	0	0	0	0.002	0	0.001	0	0.001	0.001	0	0.001	0
Ni	0.004	0.006	0.004	0.003	0.007	0.007	0.004	0.003	0.009	0	0.004	0.003	0.002
Cations	3.044	2.974	2.993	2.949	3.007	2.984	2.957	2.966	2.984	3.027	2.999	2.983	2.98
Fa%	0.16	0.14	0.14	0.14	0.14	0.15	0.14	0.15	0.14	0.14	0.14	0.14	0.15
Fo%	0.84	0.86	0.86	0.86	0.86	0.85	0.86	0.85	0.86	0.86	0.86	0.86	0.85

www.SID.ir

ادامه جدول ۴

Sample	BKSH- 11-20	BKSH- 11-21	BKSH- 11-22	BKSH- 11-23	BKSH- 11-24	BKSH- 11-26	BKSH- 11-4	BKSH- 11-5	BKSH- 11-6	BKSH- 11-7	BKSH- 11-20	BKSH- 11-21	BKSH- 11-8
Rock type	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite	websterite
SiO2	39.7448	40.1569	40.7384	40.4596	39.679	39.9573	40.4393	40.0862	39.8546	40.6633	39.7448	40.1569	40.7414
TiO2	0.0118	0.0002	0.0048	0.0026	0.0002	0.0002	0.0002	0.0002	0.0002	0.0241	0.0118	0.0002	0.0002
Al2O3	0.0212	0.0003	0.0003	0.0242	0.0724	0.0749	0.0473	0.0273	0.0296	0.0003	0.0212	0.0003	0.0003
FeO	13.1004	13.2804	13.7125	13.3798	13.2248	14.1999	13.1707	13.7271	13.9593	13.5549	13.1004	13.2804	13.3577
MnO	0.2671	0.1129	0.148	0.1004	0.2655	0.2237	0.0942	0.4248	0.1376	0.0634	0.2671	0.1129	0.2259
MgO	44.9904	45.1922	45.713	45.3889	45.4663	45.4734	45.7804	45.4672	45.2865	45.6575	44.9904	45.1922	45.563
CaO	0.0421	0.0785	0.0241	0.1071	0.0002	0.0841	0.1712	0.0772	0.0495	0.13	0.0421	0.0785	0.1031
Na2O	0.0433	0.0747	0.0721	0.0332	0.1159	0.0473	0.057	0.0152	0.0627	0.0182	0.0433	0.0747	0.0812
K2O	0.0001	0.0001	0.05	0.0017	0.0318	0.0001	0.0001	0.0001	0.0273	0.0001	0.0001	0.0001	0.0001
NiO	0.1213	0.0002	0.4787	0.2066	0.2206	0.1576	0.2191	0.3029	0.0002	0.1104	0.1213	0.0002	0.1989
Cr2O3	0.0224	0.0002	0.0002	0.0151	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0224	0.0002	0.0002
Total	98.3649	98.8966	100.9421	99.7192	99.0769	100.2187	99.9797	100.1284	99.4077	100.2224	98.3649	98.8966	100.272
Si	1	1	1	1	1	1	1	1	1	1	1	1	1
Al	0.001	0	0	0.001	0.002	0.002	0.001	0.001	0.001	0	0.001	0	0
Ti	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe2	0.276	0.277	0.281	0.277	0.279	0.297	0.272	0.286	0.293	0.279	0.276	0.277	0.274
Mn	0.006	0.002	0.003	0.002	0.006	0.005	0.002	0.009	0.003	0.001	0.006	0.002	0.005
Mg	1.688	1.678	1.672	1.673	1.708	1.696	1.688	1.691	1.695	1.674	1.688	1.678	1.668
Ca	0.001	0.002	0.001	0.003	0	0.002	0.005	0.002	0.001	0.003	0.001	0.002	0.003
Na	0.002	0.004	0.003	0.002	0.006	0.002	0.003	0.001	0.003	0.001	0.002	0.004	0.004
К	0	0	0.002	0	0.001	0	0	0	0.001	0	0	0	0
Ni	0.002	0	0.009	0.004	0.004	0.003	0.004	0.006	0	0.002	0.002	0	0.004
Cations	2.976	2.963	2.971	2.962	3.006	3.007	2.975	2.996	2.997	2.96	2.976	2.963	2.958
Fa%	0.14	0.14	0.14	0.14	0.14	0.15	0.14	0.14	0.15	0.14	0.14	0.14	0.14
Fo%	0.86	0.86	0.86	0.86	0.86	0.85	0.86	0.86	0.85	0.86	0.86	0.86	0.86

جدول۵- نتایج تجزیه کانیایی اسپینلهای موجود در پریدوتیتهای افیولیتهای نائین

sample	BSU15-1	BSU15-2	BSU15-3	BSU15-4	BKB13-1	BKB13-2	BKB13-3	BKB13-4	BKB13-5	BKB13-6	BKB13-7	BKB13-8	BSU14-1	BSU14-2	BSU14-3
SiO2	0.0339	0.044	0.0811	0.0234	0.0546	0.03	0.0295	0.0003	0.0003	0.0273	0.0003	0.0003	0.0003	0.0228	0.0003
TiO2	0.0002	0.0343	0.0447	0.064	0.0375	0.0431	0.0888	0.1212	0.0063	0.0208	0.0023	0.0643	0.0002	0.0323	0.0631
Al2O3	51.4387	52.1019	51.1186	51.5558	32.0021	32.7201	33.0094	34.1709	33.2788	32.7625	32.5396	32.3056	38.4157	38.6104	38.1451
FeO(T)	13.8234	13.3556	13.9027	13.3064	18.9251	17.1677	17.8007	16.8052	17.1945	15.9986	16.1955	16.667	14.938	14.6309	14.6365
MnO	0.0002	0.0627	0.0002	0.1765	0.2302	0.2521	0.1754	0.2498	0.2346	0.2603	0.0176	0.2695	0.1974	0.174	0.2194
MgO	18.4829	18.6553	17.9898	18.122	13.7273	13.8746	13.8297	14.6344	14.2351	15.2391	15.0867	15.0301	15.5357	15.1824	15.8927
CaO	0.0002	0.0269	0.0023	0.0168	0.0001	0.0001	0.0001	0.0249	0.0184	0.0001	0.0001	0.0001	0.0001	0.0293	0.0034
Na2O	0.024	0.0854	0.0585	0.1056	0.0481	0.0055	0.0003	0.041	0.0003	0.1045	0.0264	0.0264	0.054	0.0816	0.0256
K2O	0.0001	0.0233	0.0004	0.0107	0.0195	0.0001	0.0001	0.0307	0.0001	0.0023	0.0092	0.0001	0.0001	0.0001	0.029
Cr2O3	16.0495	14.9279	16.3772	15.8517	33.9122	34.0473	33.061	33.4524	33.1325	33.7045	34.367	33.8747	30.2496	30.2634	30.2474
NiO	0.2947	0.4237	0.2534	0.2512	0.1582	0.1371	0.1799	0.1826	0.2441	0.1828	0.3238	0.2421	0.2004	0.0243	0.0956
Sum:	100.1478	99.741	99.8289	99.4841	99.1149	98.2777	98.1749	99.7134	98.345	98.3028	98.5685	98.4802	99.5915	99.0515	99.3581
Fe2O3	2.1	2.1	1.4	1.3	3.6	2.1	2.6	2.3	2.7	3.2	2.9	3.6	1.1	0.2	1.4
FeO	11.9	11.5	12.6	12.1	15.7	15.3	15.5	14.8	14.7	13.1	13.6	13.4	14	14.4	13.4
Si	0.0009	0.0012	0.0022	0.0006	0.0016	0.0009	0.0009	0.0000	0.0000	0.0008	0.0000	0.0000	0.0000	0.0007	0.0000
Ti	0.0000	0.0007	0.0009	0.0013	0.0008	0.0010	0.0020	0.0027	0.0001	0.0005	0.0001	0.0014	0.0000	0.0007	0.0014
Al	1.6144	1.6350	1.6144	1.6288	1.1177	1.1467	1.1567	1.1721	1.1605	1.1378	1.1302	1.1238	1.2915	1.3051	1.2829
Fe+3	0.0424	0.0412	0.0290	0.0272	0.0801	0.0474	0.0582	0.0498	0.0612	0.0708	0.0645	0.0796	0.0233	0.0045	0.0303
Fe+2	0.2654	0.2563	0.2826	0.2711	0.3889	0.3796	0.3844	0.3593	0.3643	0.3235	0.3346	0.3318	0.3331	0.3464	0.3190
Mn	0.0000	0.0014	0.0000	0.0040	0.0058	0.0063	0.0044	0.0062	0.0059	0.0065	0.0004	0.0067	0.0048	0.0042	0.0053
Mg	0.7337	0.7405	0.7187	0.7242	0.6064	0.6151	0.6130	0.6350	0.6279	0.6694	0.6628	0.6613	0.6606	0.6491	0.6761
Ca	0.0000	0.0008	0.0001	0.0005	0.0000	0.0000	0.0000	0.0008	0.0006	0.0000	0.0000	0.0000	0.0000	0.0009	0.0001
Na	0.0012	0.0044	0.0030	0.0055	0.0028	0.0003	0.0000	0.0023	0.0000	0.0060	0.0015	0.0015	0.0030	0.0045	0.0014
K	0.0000	0.0008	0.0000	0.0004	0.0007	0.0000	0.0000	0.0011	0.0000	0.0001	0.0003	0.0000	0.0000	0.0000	0.0011
Cr	0.3379	0.3143	0.3470	0.3360	0.7945	0.8005	0.7772	0.7698	0.7751	0.7852	0.8008	0.7905	0.6822	0.6862	0.6824
Ni	0.0063	0.0091	0.0055	0.0054	0.0038	0.0033	0.0043	0.0043	0.0058	0.0043	0.0077	0.0057	0.0046	0.0006	0.0022
mineral	spi	spi	spi	spi	spi	spi	spi	spi	spi	spi	spi	spi	spi	spi	spi

sample BSU14-BSU14-5 BSU14-6 BSU14-7 BSU14-BSU14-BSU14-BSU14-10 11 0.0003 0.0003 0.0084 SiO2 0.0003 0.0501 0.0341 0.0003 0.0094 TiO2 0.0002 0.0918 0.0288 0.0916 0.0002 0.0748 0.0258 0.0167 A12O3 38 6898 38 8191 37 6921 38 0081 38 5604 38 5175 38 5876 38 7095 FeO(T) 14.3697 14.1398 14.0279 14.0891 14.1107 14.2317 14.949 14.9372 MnO 0 2595 0.0783 0.0708 0.3083 0.2289 0.167 0 3114 0.0767 MgO 15 445 15 3474 15 5075 15 3134 15 3579 15 565 15 2613 15 461 CaO 0.0088 0.0118 0.0381 0.0289 0.0042 0.0481 0.0485 0.0195 Na20 0.082 0.1009 0.033 0.0234 0.0003 0.0003 0.0721 0.0147 K20 0.0488 0.0001 0.0001 0.012 0.0175 0.0206 0.0001 0.0372 Cr2O3 30 796 31 2483 30 4717 30 4213 30 2041 29 0497 28 7433 30.0991 NiO 0.0334 0.102 0.2568 0.1186 0.2237 0.0001 0.178 0.0001 Sum: 99 7335 98 9535 98 4992 98 8295 98 4919 98 0253 98 7906 98 9254 Fe2O3 0.3 0.2 0.2 0.1 0.5 1.1 1.2 0 FeO 14.1 13.8 13.9 13.8 14 1398 13.9 14 13.8 Si 0.0000 0.0000 0.0014 0.0010 0.0000 0.0000 0.0002 0.0003 Ti 0.0000 0.0020 0.0006 0.0020 0.0000 0.0016 0.0006 0.0004 A1 1.2988 1.3130 1.2774 1.2923 1.3042 1.3015 1.3093 1.3157 Fe+3 0.0056 0.0000 0.0047 0.0049 0.0028 0.0105 0.0248 0.0271 Fe+2 0.3367 0.3418 0.3327 0.3350 0.3359 0.3308 0.3352 0.3332 Mn 0.0063 0.0019 0.0017 0.0075 0.0056 0.0041 0.0076 0.0019 Mg 0.6558 0.6566 0 6648 0.6586 0.6570 0.6652 0.6550 0 6647 Ca 0.0003 0.0004 0.0012 0.0009 0.0001 0.0015 0.0015 0.0006 Na 0.0045 0.0056 0.0018 0.0013 0.0000 0.0040 0.0008 0.0000 0.0018 Κ 0.0000 0.0000 0.0004 0.0006 0.0008 0.0000 0.0014 0.6935 0.6829 0 7104 0.6950 0.6902 0 6846 0.6612 0.6554 Ni 0.0008 0.0024 0.0059 0.0028 0.0052 0.0000 0.0041 0.0000 mineral spi spi spi spi spi spi spi spi

شکل ۲- (A) ار توپیرو کسن با حاشیه باستیتی شده در هارزبورژیتها، (B) برونرانشهای کلینوپیرو کسن در ار توپیرو کسن به همراه بلورهای کلینوپیرو کسن و اولیوینهای سرپانتینی شده در اسپینل لرزولیت، (C) کلینوپیرو کسن در پیوستگاههای سه گانه ار توپیرو کسنهای در ارای شکستگی با بافت انباشتی، (D) اولیوین به طور شناور در کلینوپیرو کسنهای دارای شکستگی حاصل از تراوش ماگما در آلودگی های گابرویی، (E) نمونه دستی از پریدو تیتهای آلوده شده به ماگما، با نوارها و دانه های سفید پلاژیو کلازی مشخص، (F) پلاژیو کلاز تراوی بی (مقطع میکروسکوپی نمونه E) . متیاس مقاطع ناز ک مانند شکل (A)

شکل ۳- نمودارهای REE (بهنجار به کندریت) ستون سمت چپ و نمودار چند عنصری(بهنجار به گوشته اولیه) ستون سمت راست، برای سنگهای اولترامافیک و مافیک افیولیتهای نائین

شکل۵- نمودار سه تایی Y,Zr/4,Nb*2 برای سنگهای مافیک افیولیتهای نائین

شكل۷-نمودار سه گانه Th,Hf,Nb برای تشخیص جایگاه تشکیل سنگهای مافیک منطقه نائین

شکل۹- نمودار (Cr#(spi در برابر Mg#(Oli) برای تشخیص جایگاه تشکیل

پريدو تيت ها

شکل ۱۱- نمودارهای لگاریتمی Yb در برابر Sc,V برای بهدست آوردن درصد ذوب بخشی در فوگاسیته متفاوت اکسیژن برای پریدوتیتهای نائین

شکل۴- نمودار لگاریتمی Nb/Y در برابر Zr/TiO₂*0.0001 برای تشخیص انواع سنگها

شکل۶- نمودار Ti در برابر V برای تشخیص جایگاه تشکیل سنگهای مافیک منطقه نائین

شکل۸–100*#Cr در برابر 100*#Mg نشان دهنده قرار گیری نمونههای نائین در منطقه تیپI پریدوتیتهای آلپی

شکل ۱۰- مقایسه الگوی REE های پریدوتیتهای نائین با پریدوتیتهای مناطق

شکل۱۲ – الگوی REE های پریدوتیتهای نائین برای محاسبه درصد ذوب بخشی

References

- Agard, P., Monie, P., Gerber, W., Omrani, J., Molinaro, M., Meyer, B., Labrousse, L., Vrielynck, B., Jolivet, L., Yamato, P., 2006- Transient, synobduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: Implications for Neotethyan wedge dynamics, Geophys. Res. 111, B11401, doi:10.1029/2005JB004103.
- Arai, S., 1994 Compositional varation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites, Volcanology and Geothermal Research 59 279-293.

Arai, S., 1994- Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chemical geology, 113 191-204.

Arvin, M., Robinson, P.T., 1994- The petrogenesis and tectonic setting of lavas from the Baft ophiolitic mélange, southwest of Kerman, Iran. Can, Earth Sciences, 31, 824-834.

Arvin, M., Shokri, E., 1997- Genesis and eruptive environment of basalts from the Gogher ophiolitic mélange, southwest of Kerman, Iran. Ofioliti, 22, 175-182.

Babaie, H. A., Ghazi, A. M., Babaei, A., La Tour, T.E., Hassanipak, A. A., 2001- Geochemistry of arc volcanic rocks of the Zagros Crush Zone, Neyriz, Iran, Asian Earth Sci, 19, 61-76.

Berberian, M., King, G. C. P., 1981- Towards a paleogeography and tectonic evolution of

- Brey,G. P. & Kohler, T.,1990- Geothermobarometry in fourphaselherzolites,II,New thermobarometers, and practical assessment of existing thermobarometers, Petrol, 31, 1353–1378.
- Cannat, M., 1996- How thick is the magmatic crust at slow spreading ridges?, Geophys. Res. 101, 2847-2857.
- Coleman, R.J., 1977- Ophiolilte. Springer, New York.

Davoudzadeh, M., 1972- geology and petrology of the area North of Nain, Central Iran. Rep.No.1.

- Dick, H. J. B., Bullen, T., 1984- Chromaian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 8654-76.
- Ghazi, A. M., Hassanipak, A. A., 2000- Petrology and geochemistry of the Shahr-Babak ophiolite, Central Iran. Geological Survey of America, Special paper, 349, 485-497.
- Girardeau, J., Francheteau, J., 1993- Plagioclase-wehrlite and peridotites on the East Pacific Rise (Hess Deep) and the Mid-Atlantic, Ridge (DSDP Site 334): evidence for magma percolation in the oceanic upper mantle. Proc. Ocean Drill. Prog: Sci. Res, 115, 137-149.
- Girardeau, J., Monnier, C., Lemee, L., Quatrevaux, F., 2002- The Wuqbah peridotite, central Oman ophiolite: Petrological characteristics of the mantle in a fossil overlapping ridge setting. Marine Geophys. Res. 23, 43-56.
- Godard, M., Jousselin, D., Bodinier, J. L., 2000- Relationships between geochemistry and structure beneath paleo-spreading center: a study of the mantle section in the Oman ophiolite. Earth Planet. Sci. Lett. 180, 133-148.
- Ionov, D. A., Bodinier, J. L., Mukasa, S. B., Zanetti, A., 2002- Mechanismsand sources of mantle metasomatism: major and trace element conditions of peridotite xenoliths from Spitzbergen in the context of numerical modeling, Petrol. 43/12.
- Iran. Can. J. Earth Sciences 18, 210-265.
- Jin, Z.A., Green, H.W., Zhou, Y., 1994- Melt topology in partially molten mantle peridotite during ductile deformation, Nature, 372:164-1670.
- Kepezhinskas, P. K., Defant M. J., Drummond, M.s., 1995- Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the North Kamchatka arc. Journal of Petrology 36 1505-1527.
- Kinzler, R.J., 1997- Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to midocean ridge basaltpetrogenesis, Geophys. Res. 102, 853–874.
- Li, C. N., 1992- Petrology of Igneous Trace Elements. China University of Geosciences Press, Wuhan(in Chinese) .
- Meschede, M., 1986- A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram, Chemical Geology, 56 207-218.
- Nicolas, A., 1989- Structure of ophiolites and dynamics of oceanic lithosphere, Kluwer Academic publishers.
- Nicolas, A., Prinzhofer A., 1983- Cumlative or residual origin for the transition zone in ophiolites., Jurnal of structural evidence, 24 188-206.
- Niu, Y., Hekinian, R., 1997- Basaltic liquids and harzburgitic residues in the Garrett Transform: a case study at fast-spreading ridges, Earth Planet. Sci. Lett. 146, 243-258.
- Pearce, J. A., 1996- A users guide to basalt discrimination diagrams.In: Wyman D. A.(Ed.), Trace Elemant Geochemistry of Volcanic Rocks: Applications for Massive Sulphid Exploration, Short Course Notes-Geol. Assoc.Can., Vol.12pp.79-113.
- Pearce, J. A., Parkinson, I. J., 1993- Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard H.M., Alabaster T., Harris N.B., Neary C. R. (Eds.), Magmatic Processes and Plate Tectonics. Geological Society of London, Special Publication, vol.79, pp.373-403.
- Sachlleben, T. h. and Seck, H. A., 1981- Chemical control of Al-solubility in orthopyroxene and its implications on pyroxene geothermometry Contributions to Mineralogy and Petrology, 78,157-165.
- Saunders, A., Tarney, J., 1991- Back-arc basins. In: Floyd, P.A. (Ed.), Oceanic basalts, Blackie and Son Ltd., 219-263.
- Shahabpour, J., 2004- Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz, Asian Earth Sci. 24, 405–417.
- Shervais, J. W., 1982- Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet.Sci. Lett.59 101-118.
- Taylor, W. R., 1998- An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. Neues Jahrbuch für Mineralogie, Abhandlungen, 172, 381–408.
- Winchester, J. A., Floyd, P. A., 1977- Geochemical discrimination of different magma series and their differentiation products using immobile elements, Chemical geology, 20325-343.
- Wood, D. A., 1980- The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet. Sci. Lett., 50 11-30.