CMP K.L.Pinder (// : CMP CMP (DIP) CMP DTPA EDTA CMP CMP - CMP Email: ali_ghasemian@yahoo.com

www.SID.ir

```
) DIP
                                 (
    DIP
                                     DIP
          DIP
                            DIP
      DIP
                                    CMP
                                CMP
 DIP
                              CTMP
           CTMP DIP
CTMP
                         CTMP DIP
                                                              (DIP)
                                                  Waste paper recycling
 Heimburger
                                                  Deinking
 Tremblay
                                                  Contaminants
 Supercalendering
                                                  Deinked pulp
  Law
                                                  Virgin
```

()) CMP	DIP (DIP	(()		
:					
DIP	– DIP				
(%) (M ₃) (M ₂) (M ₁)			()	DIP	
DTPA	* DIP CMP *) EDTA ()	СМР	DIP		()
Таррі Таррі		Rao Mahagaonka Banham	r		
		Fletcher Deng			

DIP

_

DIP

DIP

Tappi

Tappi

CMP DIP

(%)						
DIP			DIP			
(M ₃)	(M ₂)	(M ₁)	(M ₃)	(M ₂)	(M ₁)	
						*DIP
						CMP
) EDTA () DTPA			* (

(KPa)	(mN)	(KN/m)	(%)	
1	1	1	1	M_1I_4
1	1	1	1	M_2I_4
1	1	1	1	M_3I_4
		0,		
1	1		1	M_1I_6
1	1	1	1	M_2I_6
1	40.	1	1	M_3I_6
1		1	1	
		()	$M_3 M_2 M_1()$

EDTA DTPA DIP 6 4 ()

DIP

CMP

DIP

...

DIP

:

 $(\)$ / Y + J Y + J Y + J Y =

M_3I_6	M_2I_6	M_1I_6	M_3I_4	M_2I_4	M_1I_4	
1	1	1	1	1		

·

 (KPa)
 (mN)
 (KN/m)
 (%)

 /
 /
 /
 M₁II₄

 /
 /
 /
 M₂II₄

 /
 /
 /
 M₃II₄

 /
 /
 /
 M₁II₆

 /
 /
 /
 M₂II₆

 /
 /
 /
 M₃II₆

EDTA DTPA DIP 6 4 ()

. DIP CMP


```
(
                                                            )
                                    ()
/ Y +./
                                  Y =
              Y + /
                        Y + /
                                                                                     DIP
                    DIP
                          M_1I_6
                                    M_3I_4
                                              M_2I_4
                                                       M_1I_4
       M_3I_6 \\
                M_2I_6 \\
                 1
                                    1
           ) DIP
            DTPA
                                                   M_3I_6 \\
                M_2I_4 \\
                                                                    ( /
                                                     CMP %
                                                                DIP %
                      CMP %
            DIP
                                                           6
                                                                                   DIP
                                                                                  EDTA
                                   CMP
                                               CMP
                                                                                %
                              M_3I_4 \\
                                                                               M_2I_6
                          CMP %
                                    DIP
                                                DIP %
         ) DIP
                                                                                CMP%
                            (M_2I_4)
                                                              M_3I_6 \\
                                                                                M_3I_6
                              )
                                                                                DIP
  (M_2I_4)
```

www.SID.ir

```
)
                 DIP
M_1II_6
                DIP
(M_1II_4)
                            (M_2II_6)
       CMP DIP
                                                 DIP %
      EDTA
                                                       DIP%
        DIP
                            DTPA
                                                                DIP
                                                                      CMP
                                           M_1II_6
                           DIP
       CMP
                                                                        )
                                                          ( /
                                           CMP %
                                                      DIP %
                                             M_2II_6 \\
                                            CMP %
                                                      DIP%
                                                          DIP
                                                                       %
                                           M_1II_4 \\
                                                          DIP
                                                          (/)
                                           %
                                                    CMP % DIP %
                                       DIP
```

www.SID.ir

K.L.Pinder

CMP :

. :()

- 2- Deng.Y.2000. Effect of fiber surface chemistry on the fiber loss in flotation deinking Tappi J., June 2000,61-67.
- 3- Fletcher, R.S., et al., 1998. Enhancing deinked pulp quality through low consistency refining, PPC, 99(2):26-31.
- 4- Heimburger, S.A., S. Tremblay, 1990. Optimal deinking and bleaching of recycled newspapers and magazines to produce mechanical printing paper, Proceedings. Tappi pulping Conf., 525-535.
- 5- Law, K.N., et al. 1995. Replacement of the chemical pulp in newsprint by chemically treated ONP, Paprican, Progress in paper recycling, Feb. 1995, 28-35.
- 6- Mahagaonkar, M. & Paul Banham,1998. The effects of coated magazines on deinking of newsprint after pulping and flotation, Tappi J.,81(12):101-110.
- 7- Rao,R.,et al., 1996. The role of coated paper and fillers in flotation deinking of newsprint, Paprican, Progress in paper recycling, Feb. 1996,103-112.
- 8- Tappi.2000. Standard test methods , Tappi press, Atlanta, GA.

ONP/OMG Deinking Part 2: Effects of DIP Use on the Properties of Local CMP Pulp

A. Ghassemian*1, H. Ressalati2, A. A. Enayati3 and K.L Pinder4

¹ Asst. Prof., College of Forestry and Wood Technology, Gorgan University. of Agriculture and Nat. Res, I. R. Iran

Assc. Prof., College of Forestry and Wood Tech., Gorgan University. of Agriculture And Nat. Res, I. R. Iran

³ Assc. Prof., College of Nat. Res., University of Tehran, I. R. Iran ⁴ Emeritus Professor, Chemical Engineering Department, British Columbia University, Canada, I. R. Iran

(Received: 25 Sep 2004, Accepted: 4 Dec 2005)

Abstract

Newsprint is currently made in Iran using CMP pulp produced from local hardwoods mixed with imported long fibers. Due to the limitation of domestic cellulosic materials, the possibility of using local deinked pulp (DIP) in place of part of local CMP, and therefore decreasing the percentage of imported long fiber use in the mix of pulps has been studied in this research. The bleached deinked pulps of local ONP/OMG mixes were separately mixed at 10, 20 and 30 Percent ratios with local hardwoods CMP, including imported long fiber pulp. Measuring the optical and mechanical properties of the hand sheets made out of these mixes, the best mix was determined by calculating the related normalization equation and the score of each mix. The results have shown that in the case of DIP type 1 (produced by using DTPA as chelating agent), the best score,i.e. The best properties belong to the mix containing 20 percent of the DIP. Using DIP type 2 (produced by using EDTA as chelating agent), the highest score belongs to the mix containing 30 percent of DIP. Moreover, using 20 percent of DIP type 1 in the mix, the ratio of long fiber pulp use must be kept at 17 percent the decrease of which would not be suitable.But,using 30 percent of DIP type 2 in the mix, the best ratio of long fiber pulp use is at 17 percent, which can be lowered to 12 percent, as well.

Keywords: ONP, OMG, Deinking, Deinked Pulp (DIP), CMP Pulp, Long Fiber Pulp, Optical Properties, Mechanical Properties, Normalization Equation.

^{*} Corresponding author: Tel: +98171-2245882 , Fax: +98171-2245966 E-mail: ali ghasemian@yahoo.com