مطالعات پرتو ایکس .Mr Gas Te

مصطفی دهقانی مبار که * +

تهران، پژوهشگاه صنعت نفت، جاده قدیم قم، سه راه خیر آباد، صندوق پستی ۱۸۳۶-۱۸۷٤۵

چکیده: فازهای (M: Li, Na) .(M: Li, Na به طور مستقیم از واکنش عنصرها به شکل تک بلور و ریز بلور سیاه رنگ و هموژن به دست آمدند. طبق آزمایش های تعیین ساختار بلوری، هر دو ترکیب در گروه فضایی RT۲ (شماره 100 ، Z = ۲) متبلور می شوند و پارامترهای شبکه آنها MrGa₁Te₁. (۲۵) ، ۲۵ (۲۹) = ۵ برای Li_rGa₁Te₁. (۳ (شماره 100 ، Z = ۲) متبلور می شوند و پارامترهای شبکه آنها mr (۲۰) ، ۲۵ (۲۰) ، ۲۰ (۲۰) د ۲۰ (۲۰) متبا ماختار آنها انباشته چهاروجهی (۱۷۲۱ (۲۰) (۲۰) (۲۰) (۲۰) از یونهای ^{-۲} ۲۰، مشابه ترتیب اتمهای Mn ساختار آنها انباشته چهاروجهی (tetrahedral close packing) از یونهای ^{-۲} ۲۰، مشابه ترتیب اتمهای Mn در بتا- منگنز، شناسایی شد. در حالی که یونهای ^{۲۳} مامی حفره شبه منشور (متا پریسمها، Strepring) را اشغال می کنند. یونهای بسیار کوچک ^۲ امکانهای خارج از مرکز (off- center)) در متا پریسمها را اشغال می کنند. میکند. یونهای بسیار کوچک ^۲ امکانهای خارج از مرکز (strongest off-center) را اشغال می کنند. مکانهای به شدت خارج از مرکز (strongest off-centering) فقط بر اساس یک مدل شکلفت (split model) قابل

KEY WORDS: Tellurium, β -Mn, Rubidium, Silver, Gallium, X-ray, Metaprismatic, tcp, Crystal structure.

مقدمه

هستندولی ساختار بلوری پیچیدهای دارند. کاتیون عنصرهای متفاوت (مانند: Ag, Rb, Sn, Pb, Ga, In, Al) در حفرههای شبه منشور (متاپریسمها) جاگرفتهاند و در نتیجه شبکه سه بُعدی منظمی از چند وجهیهای پر و توخالی بهوجود آوردهاند که می بایستی بستر بسیار خوبی برای تحرک فوق العاده خوب کاتیونهای داخل شبکه، باشند. به طور فرضی می توان شبکه را به دو بخش آنیونی و کاتیونی تقسیم کرد. بخش آنیونی متشکل از ^{-۲} (.۱۰ (M₅X₁) با Y: I⁻ Br⁻¹ (N₅Y₄) یا ^{-(N₅Y₄) با ^{-(N₅Y₄) با N: Al^{*-1}, Sa^{*-1} (N₅Y₄) مناصر از کاتیونهای مناصب}} فازهای بتا منگنز پر شده با غیر فلزها که بهصورت ترکیبهای شیمیایی ...(M: Li, Na).MGa و ...(سالهای اخیر بررسی شدهاند [۱ و ۲] و دیگر فازهایی ماننه د ...(۱ میسازند که در آنها ^{-۲} Ta و یک گروه از جامدهای سه تایی^(۱) را میسازند که در آنها ^{-۲} Ta و ^{-۲} یک انباشته چهاروجهی^(۲) را میسازند که در آنها (-۷]. این انباشتهها مشابه ترتیب اتمهای Mn در بتا منگنز بوده و نبایستی با انباشتههای کلاسیک مکعبی (ccp) یا هگزاگونالی (hcp) اشتباه گرفته شوند. به خاطر انباشتههای چهاروجهی (tcp)، فازهای بتا منگنز پر شده هر چند دارای فرمول شیمیایی به ظاهر ساده

*عهدهدار مکاتبات

⁺E-mail: modeg128@yahoo.de

⁽¹⁾ Ternary solids

⁽**Y**) Tetrahedral close packings

جاسازی در حفرههای متاپریسمی منفرد^(۱) در شبکه است. تنوع در نظم و ترکیب شیمیایی، کاهش تقارن و یا سوپر ساختارها^(۲) را به همراه دارد که مترادف با نوع و چینش عنصرهای به کار رفته در آن ترکیب است. ساختار هر یک از اعضای خانواده بتا – منگنز میتواند از نوع شاخص آنها یعنی بتا– منگنز مشتق شده باشد، به همان گونه که اسپینلها از نظم ccp، مشتق میشوند. سیستمی شامل چند وجهیهای x_n یا r با عدد کوئوردیناسیون بالا (۲۲<) نیز می تواند بیانگر بتا– منگنز باشد. هر چند که این حالت برای پرکننده های فلزی (نه نافلزی) متداول است [۳–۶].

اصول ساختاری فازهای پر شده بتا _ منگنز که تاکنون شناخته شدهاند، سنتز مواد جدید با همان ساختار را دور از انتظار نمی گذارند. LirGasTe1. و NarGasTe3. ترکیبهای مورد بحث در این مقاله، مثالهایی از این قبیل هستند که در آن یونهای ⁺M (Li, Na) نه تنها بخشی بلکه تمامی حفرههای متاپریسم را اشغال کردهاند.

مسانایی فوق العاده خوب یونهای نقره در Δ-RbAg_fI_a رسانایی فوق العاده خوب یونهای نقره در Δ-RbAg_fI_a (-9] که شاید معروفترین عضو گروه فازهای پر شده بتا منگنز است، انگیزه سنتز فازهای مشابه با وجود یونهای لیتییم و دیگر فلزهای قلیایی بهجای یونهای متحرک نقره را بهوجود آورد. در مقایسه با Δ-RbAg_rI_a ، فازهای بتا – منگنز پر شده که در آنها یونهای (-2Se⁻¹) Te⁻¹ بهجای آ نشستهاند، بهطور عمومی از نظر شیمیایی غیرفعال بوده و در مجاورت هوا تغییر نمی کنند (به استثنای فازهای محتوی A1).

بخش تجربی سنتز

 $Na_{7} Ga_{5} Te_{1}$ و $Na_{7} Ga_{5} Te_{1}$ (نقطه ذوب: K (نقطه دوب: $Li_{7} Ga_{5} Te_{1}$) و $Ci_{7} Ga_{5} Te_{1}$ (نقطه ذوب: $Ci_{7} Ga_{5} Te_{1}$) به منور دوب ندی آنها و در سرنگهایی از جنس کوارتز و تحت خلاء تهیه شدند [۱ و ۲] . به منظور پیشگیری از کاهش SiO_{7} موجود در دیواره سرنگ، سطح داخلی سرنگ به روش تجزیه حرارتی^(۳) بخار استون، به وسیلهی لایه ناز کی از کربن پوشانده شد. سرنگ محتوی مخلوط عنصرها در ابتدا تا K موجار داده شد و سپس به مدت ۳ هفته در K) ابتدا تا K مواری شد.

یودر و تک بلور آن) مواد جامد (پودر و تک بلور آن) مواد جامد Li_r Ga_sTe₁. و Li_r Ga_sTe₁. سیاه رنگ بوده که در دمای محیط نسبت به هوا حساسیت زیادی

ندارند. تک بلورهایی که برای گردآوری دادهها مناسب بودند روی پراش سنج چهار محوره^(۴) به وسیلهی روغن مناسبی در لوله های مویین پرتو X ثابت شده و در ۱۸۰ اندازه گیری شدند(جدول ۱). اندازه گیریهای DSC روی .Lir GasTe دو تغییر فاز در ۷۱۳ K و ۸۵۰ ۸ را نشان میدهند. تعیین ساختار بلوری با برنامه NRCVAX refinement program [۱۴]انجام گرفت و ضریبهای ساختار از جدولهای بین المللی بلورشناسی گرفته شدند [۱۵].

نتایج و بحث

جدولهای ۱ تا ۳ دادههای پرتو X و پارامترهای ساختاری برای Lir GasTe۱. در دمای ۱۸۰ K را نشان میدهند. مجموعهای از طول پیوندها و زاویههای پیوندی مهم برای Lir GasTe۱. در جدول ۴ نشان داده شدهاند.

ساختار بلوری .Li_r Ga₅Te₁ بر مبنای ساختار β-Mn بوده و مشابه یک انباشته اوتکتیکی^(۵) [۱۰] متشکل از ۲۰ اتم ^{-۲} در یک سلول شبه ـ مکعب است که در آن ۱۲ درصد از حفرههای چهاروجهی بهوسیلهی ^{۳+} Ga^{۳+} اشغال شده و ⁺Li⁺/Na در همه حفرههای متاپریسم قرار گرفتهاند. سلول واحد در شبه ـ مکعب (M_r Ga₅Te₁, درای . Z = ۲) محتوی ۱۰۰ حفره چهاوجهی و ۴ حفره متاپریسم است [۴].

فرض اولیه که ممکن باشد ⁺Li در .، Li⁺ Ga₅Te و ⁺Na در Na⁺ Ga₅Te و نظم Na⁺ Ga₅Te, Na₇ Ga₅Te, Na₇ Ga₅Te, Na₇ Ga₅Te, Na₇ Ga₅Te, Na₇ Ga₅Te, varc b ویژه و بهروش اتفاقی اشغال کنند (مشابه یونهای پر متحرک ⁺AB در رسانای یونی ماهال کنند (مشابه یونهای غیر متحرک Li⁺Na⁺ Rb⁺ در رسانای یونی ماهد (Caller Caller Caller)، تأیید نشد و یونهای tit, Na⁺ Rb⁺ در رسانای یونی دا که مربوط به یونهای غیر متحرک Li⁺Na⁺ Rb⁺ در ₁ A در رسانای یونی دا که مربوط به یونهای غیر متحرک Li⁺Na⁺ Rb⁺ در ₁ A c - RbAg₇Ta c - RbAg₇Ta c - Caller c -

⁽٤) Four circle diffractometer(Δ) Like "eutactic" paking

^{(1) &}quot;Isolated" metaprismatic holes

⁽Y) Superstructures

⁽*****) Pyrolysis

داده شده است. این کاهش تقارن یک مجموعه متشکل از ۶ مکان غیر وابسته به تقارن برای مراکز حفرههای چهاروجهی در گروه فضایی (P۴₁۳۲ (P۴_۲۳۲ را به دسته های متشکل از ۱۵ عدد شش محوره، ۲ عدد سه محوره و ۲ عدد دو محوره در R۳۲ میشکند (توضیح اینکه با کنار هم قرار دادن ۳ واحد رومبوهدرال حول محور اصلی، یک سلول با آرایش هگزاگونال بهدست میآید).

تنها ۲ مکان شش محوره از آنها (Ga و Ga و Ga مطابق با حفرههای .T و T₅ [(و ۲]) بهوسیله ی Ga^{۳+} الشال می شوند. همزمان با آن مکان چهار محوره که مشخص کننده مرکز متاپریسمهاست به یک مکان یک محوره و یک مکان سه محوره شکسته شده و هر دو مکان بهطور کامل بهوسیله ی (Li/Na(B) و Li/Na(A) اشغال می شوند.

این نظم مشاهده شده و فاصلههای بین اتمی d_{Ga-Te} و این نظم مشاهده شده و فاصلههای بین اتمی Ga^{r+} of Ga^{r+} (جدول ۳)) برای Ga^{r+} of Ga_{r} (جدول ۳)) برای Ga^{r+} of Ga_{r} (آ) معان حدود (آ)) مرای Ga_{r} - of Ga_{r} -

بهخاطر پیچیدگی آرایش $-^{7}$ در فاز Mn- β ، برای شبکه سه بعدی حاصل از اتصال چهار وجهیهای γ GaTe و متاپریسمهای Li/NaTe ، نمیتوان مدل سادهایی ارایه کرد. احاطه اتمهای M (A) (Li/Na(A) و (B) Li/Na ، هر دو با عدد کوئوردینانسی ۶) از اتمهای Te به شکل متاپریسم ، بهوسیله ی انواع γ Te ، γ Te و γ Te و صورت می گیرد، درحالی که Te و σ Te در کوئوردیناسیون متاپریسمایی اتمهای M بهطور مستقیم با آن در تماس نیستند. ساختار جزیی Li/Na(A,B) و γ ، γ Te Te γ یک شبکه سه بعدی از متاپریسمهای ($MTe_{s/r}$) با گوشه ی مشترک و با ترکیب اسمی MTe^{γ} تنییر شکل یافته σ Reo در نظر گرفته شوند.

از طرف دیگر اتمهای Ga در مرکز چهاروجهیهای تغییر یافته^(۱) که بهوسیلهی ۴، ۳، Te۲ و ۵، Te۱ ساخته شدهاند، قرارمی گیرند. فقط ۱۲ درصد از چهاروجهیهای Te بهوسیلهی Ga اشغال می شوند.

علمی _ پژوهشی

شبکه متشکل از ۱۲ درصد چهاروجهیهای پر و ۸۸ درصد چهاروجهیهای خالی به گونهایی با شبکه متاپریسمهای های MTe تداخل پیدا میکنند که چهاروجهیهای ،GaTe هرگز وجه یا ضلعی مشترک با متاپریسمهای ،MTe تشکیل نداده و فقط دارای رأس مشترک با آنها هستند. چهاروجهیهای خالی با متاپریسمها ضلع مشترک تشکیل میدهند.

اشتراک رأس و ضلع بین چهاروجهیهای ۲۹۳۰ و اشتراک ضلع و وجه بین چهاروجهیهای اشغال و خالی (وجه مشترک بین چهاروجهیهای اشغال شده بهوجود نمی آید) رخ میدهد. قسمت به نمایش گذاشته شده در شکل ۱ نمونه شاخصی از اشتراک رأس و ضلع بین چهاروجهیهای ۲۹۳۶ و اشتراک رأس بین چهاروجهیهای ۲۹۳۴ و متاپریسمهای ۲۹۳۶ را نشان میدهد.

هر چند اشغال حفرههای چهاروجهی در ماتریسی از Te با ساختار اوتکتیکی β-Mn ، بهوسیلهی اتمهای Ga انتظار میرفت اما در ابتدا مشخص نبود که کدام نوع از حفرهها (چهار وجهی یا متاپریسم) بهوسیلهی یونهای ⁺M ترجیع داده میشوند. در این مقاله بهوضوح نشان داده شد که کاتیونهای فلزهای قلیایی فقط حفرههای متاپریسم را اشغال میکنند و هرگز حفرههای چهاروجهی را در هر دو ترکیب ..M_۲ Ga₂Te

بر خلاف Li در .اLi_۲ Ga_۶Te اتمهای Na در .اNa Ga_۶Te تمهای Na در . در مکانهای خارج از مرکز قرار نگرفتهاند و فاصله بین اتمی مشاهده شده م_{اع}Te < ۳۲۹ pm) d_{Na-Te} با مقدارهای مورد انتظار مطابقت دارد.

دادههای پرتو X بهدست آمده برای دمای اتاق و دمای پایین (جدول ۲)، (Li(A را در اشغال یک مکان شکافت (مکان ۶c بهجای ۳b در ۳۳۲ ، آرایش هگزاگونال) و (Li(B در مکان اندکی خارج از مرکز متاپریسم نشان میدهد (شکل ۲).

 Te^{7-} فاصلهی متوسط مرکز حفرههای متاپریسم تا یونهای Li(B) مجاور m و Li(B) است.

۶ مقایسه با فاصله مورد انتظار ۲۹۷ pm ۲۹۷ برای عدد کوئوردیناسیون (r(Li⁺) = ۷۶ pm CN۶ برای ۲۲۱ pm (۲۳) به وضوح نشان می دهد که ^۲ Li برای آن حفرهها خیلی کوچک است. این شرایط قرار گرفتن (Li(A) در موقعیتی به شدت خارج از مرکز^(۲) را تقویت می کند. افزون بر ین می تواند تفاوت فاحش فاصلهها تا Li(B) برای (Li(A) برای (Li(A) و Li(A) نقش مهمی را بازی کنند.

⁽Y) Strong off-centering

⁽¹⁾ Distorted tetrahedral

شکل ۱ ـ بخشهای شاخصی از ساختار بلور . Li_rGa₇Te . متاپریسمها (سایه دار شده) در اطراف (A) (I ـ الف) و (Ii(B) (I ـ ب) و در مجاورت چهاروجهیهای GaTe نشان داده می شوند. GaTe تشکیل رأس مشترک با متاپریسمها و رأس و ضلع مشترک با یکدیگر می دهند.

اگر (A) Li(A در مرکز حفره قرار میداشت، شش Ga^{۳+} Ga در فاصله ۴۵۰ pm آن قرارمی گرفتند و (B) دو همسایه نزدیک در ۳۵۴، دو دور دو تا در ۳۸۵ و دو تا در ۴۷۱ pm میداشت. پس (A) در دور شدن از مکان مرکزی آزادی بیشتر دارد، که در عمل هم با نتیجه های آزمایش های انجام شده مطابقت دارد(P۹ pm) ۲۱ Li(B): ۲۹

تا به حال هیچ نشانی از اینکه ترکیبهای مشابه با فلزهای قلیایی سنگین تر K ، Rb و CS از نظر ترمودینامیکی بهعنوان مواد جامد پایدار وجود دارند، وجود ندارد.

نکته مهم این است که آیا یونهای لیتیم با توجه به جاگیری نامناسب Li/Na در حفرههای متاپریسم، در دماهای بالاتر، تحرک قابل توجهی از خود نشان میدهند؟

اگر چه متاپریسمهای مMTe در M_r Ga_sTe_{۱۰} بهطور انحصار بهوسیلهی رأس مشترک با یکدیگر مرتبط هستند ولی سطوح خود را فقط با چهاروجهیهای توخالی ۲e_۴ مجاور خود به اشتراک میگذارنـد. بدیـن ترتیـب مهاجـرت یـونهای ⁺Mاز یـک حفـره

(Difference Fourier plot) شکل ۲_ مقاطعی از نقشه تفاضلی فوریه (Difference Fourier plot) $\Delta \rho$ (x, +/7٦+, z) $\Delta \rho$ (x, +/٧٣+, z) (x- (x, +/٧٣+, z) (b- (x) + (x) +

متاپریسم به متاپریسم بعدی بهوسیلهی حفره چهاروجهیهای توخالی ۲۰ مکان پذیر است. توخالی ۲e_۴ که با هر دو آنها وجه مشترک دارد، امکان پذیر است. رنگ سیاه هر دو فاز M_۲ Ga_۶Te₁. و هدایت سنجی انجام شده حاکی از این است که رسانایی الکترونیکی این دو فاز بسیار بیشتر از رسانایی یونی آنها است.

در این تحقیق برای مقایسه ...NaAgGa₅Te₁ (ایزوتوپیک با ...Li₇ Ga₅Te₁ / Na₇ Ga₅Te₁ و با جایگزینی ۵۰ درصد از X بهوسیلهی ⁺Ag) در طی ازمایش های انجام شده با پرتو روی تک بلورها و در دماهای متفاوت، تحرک قابل ملاحظهای برای یون های ⁺Ag مشاهده شد.

تشكر و قدرداني

نویسندهی مقاله از آقای دکتر حمید رضا آقابزرگ و Prof. H. J. Deiseroth, Prof. H. Günther, Dr. L. Kienle, برای کار ارزشمند آنها در خصوص ترکیبهای Dr. M. Hartung نامبرده شده در این مقاله تشکر میکند.

Formula	Li ₂ Ga ₆ Te ₁₀		
formula weight (g mol ⁻¹)	1711.28		
crystal system	trigonal		
single crystal diffractometer	CAD4, ENRAF-NONIUS		
Radiation	ΜοΚα		
lattice coslants (pm) (hex.)	a=1436.9(2) c=1759.0(4)		
(rhomb.)	$a = 1017.7$ $\alpha = 90.09^{\circ}$		
volume (10^6 pm^3) (hex.)	3145(1)		
Z (hex.)	6		
space group	R 32 (No. 155)		
$d_{X-Ray} \left(gcm^{-3}\right)$	5,411		
F(000)	4241		
μ (mm ⁻¹)	16.19		
temperature (K)	180		
crystal size (mm ³)	0.05 ×0.05 × 0.07		
scan-type	w-20		
data range	$-17 \leq h \leq 0 \ , \ 0 \leq k \leq 17, \ 0 \leq 1 \leq 24$		
20 maximum	60		
number of refl. (all/independent)	2201/2039		
observed reflections $(1 > 2.5 \sigma (I))$	2019		
R _{int.}	0.032		
refined parameters	66		
corrections	Lorentz, polarization, absorption, exinction		
absorption correction	empirical , y-scan		
refinement program	NRCVAX [14]		
min./max. transmission ratio	0.0344/0.0692		
min./max. resid. electr. dens. [e/10 ⁶ pm ³]	-2.090/1.870		
extinction coefficient	0.037(5)		
GooF	4.6		
R _f (I>2.5s (I))	0.026		
R _w (all refl.)	0.041		

جدول ۱ ـ داده های پرتو X و بلورشناسی برای .LirGazTe در دمای X • K *.

* Details of crystal structure investigation at T = 390 K are available on request from the Fachinformationszentrum Karlsruhe, D- 76344 Eggenstein – Leopold-shafen on quoting the depository number CSD-402881 ($Li_2Ga_6Te_{10}$) and CSD – 402329 ($Na_2Ga_6Te_6$), the names of the authors, and the journal citation.

$$R_{f} = \frac{\sum \left\| F_{o} \right\| - \left| F_{e} \right\|}{\sum \left| F_{o} \right|} \qquad \qquad R_{w} = \sqrt{\frac{\sum (w(F_{o} - F_{e})^{2})}{\sum (wF_{o}^{2})}} \qquad \qquad GooF = \sqrt{\frac{\sum (w(F_{o} - F_{e})^{2})}{n - p}} \\ n = No. of refl., \qquad p = No. of params. \qquad w = 1$$

Atom	Position	x	у	Z	G	B(iso)
Li(A)*	۶c	١٫٣	۲٫۳	۰ _/ ۰۹۸(٣)	۰ _/ ۸(۲)	۱٫۵(۱)
Li(B)**	٩d	۰ _/ ۷۲۹(۴)	x	•	• /۶(۲)	۲/۴(۲)
Ga(٣)	١٨f	۰٬۵۸۴۱(۱)	۰ _/ ۹۹۸۱(۱)	•,74474(V)	۰ _/ ۹۹۴(۸)	۱,۱۶(۶)
Ga(Y)	١٨f	• ،٨٨٨٩(١)	١,٠٧٩١(١)	۰ _/ ۲۳۷۹۷(۷)	۱٬۰۰۵(۸)	١,٢٠(٦)
Te(1)	١٨f	۰ _/ ۷۰۱۰۵(۶)	۰ _/ ۹۰۱۹۸(۶)	•,78144(4)	۱٬۰۰۰	۱٬۰۴(۳)
Te(Y)	۱۸f	۰,۳۸۸۸۴(۲)	+ _/ ۸۵۹۲ • (۲)	• ، ۲۸۶۸۰ (۵)	۱٬۰۰۴(۶)	۱٬۳۳(۴)
Te(r)	٩e	۰ _/ ۹۱۸۶۳(۸)	$\mathbf{x} + \mathbf{y}_{\mathbf{y}}$	1),5	۱٬۰۰۲(۷)	۱٫۳۵(۴)
Te(۴)	٩d	۰,۱۶۶۵۳(۸)	x		١,٠٠۴(٨)	۱٬۳۳(۴)
Τε(Δ)	۶c	•	•	۰/۱۲۰۸۴(Y)	٠ _/ ٠ ١۴(٩)	۱٬۰۴(۳)

جدول ۲ ـ مختصات نهایی اتمها (R۳۲, hexagonal setting) ، میزان اشغال حفره ها (G) و پارامترهای جابهجایی حرارتی همسو (Isotropical) [۲۰ × ۱۰^۲] (Isotropical) در دمای ۱۸۰ K و مقدار انحراف از معیار در پرانتز.

*) Split position!, center position of metaprism : ("b) 1/", 1/", 1/1898 **) Center position of metaprism (٩ d) • ハ۵۰, • ハ۵۰, •

جدول ۳ ـ پارامترهای جابهجایی حرارتی غیر همسو (Anisotropical) * [^۲ + ^۲ + ^۳ B_{aniso} [pm⁷ × ۱۰⁴] برای Li₇Te₇T₁. در دمای ۱۸۰ K و مقدار انحراف از معیار در پرانتز.

Atom	Uw	Urr	Urr	U _{\Y}	U ₁ ,	U ₇₇
Li(A)	١/٩(١)					
Li(B)	٣/٠(٢)					
Ga(1)	١/۴٧(٧)	۱٬۵۳(۲)	1/44(8)	۰,۷۷(۶)	•,•٧٠(۵)	-٠,٠۴٠(۵)
Ga(Y)	۱/۴۴(Y)	١,٣٨(٧)	١,۶٩(۶)	•18Y(8)	•,•¥•(۵)	-•,•) •(۵)
Te(1)	١,٢٢(۴)	١/٢٢(۴)	١,۴٢(۴)	• /88(8)	-•/•) • (٣)	•,• • • (٣)
Te(٢)	١,٣٠(۴)	۱ _/ ۸۰(۴)	١,٧۵(۴)	۰,۶۲(۳)	-•,\ ·· (٣)	۰٫۱۷۰(۳)
Te(٣)	۱٫۴۳(۵)	Uw	۲/۱۵(۶)	۰,۶۳(۵)	-•,\\AA(Y)	-U ₁₇
Te(۴)	١,۵٢(۵)	U _W	۱٬۶۵(۵)	۰ _/ ۴۷(۵)	•,•٩٢(٢)	-U ₁ ,
Τε(Δ)	١,٢٣(۴)	U _W	١/٣٩(۶)	۶۲ ا	•/• • • •	•,•••

*) U_{ij} are difined as $U_{ij} = -r\pi^{r}$. $(h^{r}. a^{*r}. U_{11} + ... + r.h.k. a^{*}. b^{*}. U_{1r} + ...)$

علمی _ پژوهشی

٦٢

Gal – Tel	۲۶۷٫۶(۲)	Li(A) – Ga¥*	۴۱۴(۶) ۳ ×
Те١	٢۶۴/٨(٩)	Gal	$ au$ TT(δ) T $ imes$
Те۲	۲۶۰٬۱(۲)		
Te f	۲۵۸/۶(۴)		
Ga7 – Te1	٢٦٣/۴(٢)	Li(B)-Ga V	۳۶۰(۲) ۲ ×
Te Y	४ ८१/५(५)	Gať	WV(T) T ×
Те٣	۲۶۲٫۳(۳)		
ТеΔ	۲۶۵ $_{/}$ ۸(۳)		
Li(A) –Te¥*	787(7) W ×	MP(A) – ΤεΥ**	774 S ×
Te۲	414(8) W ×		
Li(B)-TeY	m.r(r) r ×	MP(B)-Te 7 **	417 7 ×
Те٣	m))())	Те۳	414 X ×
Te f	877A(S) 7 ×	Te f	rrf t ×
Te1-Ga1-Te1	٩٧/٩(١)	Te1-Ga7-Te7	۱۱۰ _/ ۴(۱)
Te1-Ga1-TeY	۱۱۰٫۲(۱)	Те1-Ga7-Те٣	17.1.(1)
Te1-Ga1-Te f	۱۱۵٫۷(۱)	Te1-Ga7-Te7	$\mathfrak{P}_{\lambda} \Delta(1)$
Te1-Ga1-Ter	۱۰۴٬۰(۱)	Те 1-Ga۲-Те٣	$1 \cdot \Delta/\Re(1)$
Te1-Ga1-Tef	١١۴/٩(٢)	Te1-Ga7-Te۵	۱۱۳/V(۱)
Tel-Gal-Tet	۱ <i>۱۲/۶</i> (۱)	Τε ነ-Ga۲-Τεδ	۱۱۰/۴(۱)

جدول ٤ ـ طول پیوندها (pm) و زاویههای پیوندی (درجه) برای LirGazTe1. در دمای ۱۸۰K و مقدار انحراف از معیار در پرانتز.

*) Split position for Li (A) **) Center position for Li(A) /Li(B) (MP:metaprism)

تاريخ دريافت : ۸۲٫۳٫۲۷ ؛ تاريخ پذيرش : ۸۲٫۷٫۱٤

مراجع

- [1] Deiseroth, H.J. and Müller, H.D., Z. Anorg. Allg. Chem., 622, 405 (1996).
- [2] Deiseroth, H.J., Kienle, L., Gunther, H. and Hartung, M., Z. Anorg. Allg. Chem., 626, 302 (2000).
- [3] Shoemaker, C.B. and Shoemaker, D.P., Monatsh. Chem., 102, 1643 (1971).
- [4] O'Keefe, M. and Andersson, S., Acta Cryst., A 33, 914 (1977).
- [5] Shoemaker, C.B. and Shoemaker, D.P., Acta Cryst., 42, B, 3 (1986).
- [6] Jeitschko, W., Nowotny, H. and Benesovsky, F., Monatsh. Chem., 95, 1212 (1964).
- [7] Geller, S., Science, p. 310 (1967).
- [8] Geller, S., Phys. Rev, B 14, 4345 (1976).
- [9] Adams, S., Kuhs, W.F. and Wilmer, D., 7th Jahrestagung der Deutschen Gesellschaft für Kristallographie (DGK), Leipzig, p. 87 (1999).
- [10] O'Keeffe, M., Acta Cryst., A 33, 924 (1977).
- [11] Deiseroth, H.J. and Müller, H.D., Z. Kristallogr., 210, 57 (1995).
- [12] Panzer, B., Range, K.J. and Zabel, M., J. Less-Comm. Met., 106, 305 (1985).
- [13] Shannon, R.D. Acta Cryst., A 32, 751 (1976).
- [14] Gabe, E. J., Le Page, Y., Chaland, J. P., Lee, F. L. and White, P. S., The NRCVAX crystal structure system, Chemistry Division, NRC, Ottawa, Canada (1990).
- [15] International tables for crystallography, *Dordrecht, Holland*; Boston Published for the International Union of Crystallography by D. Reidel Pub. Co., Norwell, MA, U.S.A., Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers (1987-1992).