+*	
KEY WORDS: Drying, Fluidized bed, Infrared waves, Heat carrier particles, Potato.	
· · ·	

+ E-mail: dmowla@shirazu.ac.ir

*

...

() Mathlab

کنترل کننده دما

F

www.SID.ir

cm

	(W / m ³)					
			T= °C			
	Dia= / mm L= / mm		Dia= /	Dia= / mm L= / mm		
Q	, ×	, ×	, ×	, ×	, ×	, ×
Q	, ×	, ×	, ×	, ×	, ×	/ ×
Q	, ×	, ×	, ×	, ×	, ×	, ×
			T= °C		·	
	Dia= / mm L= / mm			Dia= / mm L= / mm		
Q	, ×	/ ×	, ×	, ×	, ×	, ×
Q	, ×	, ×	, ×	, ×	, ×	/ ×
Q	/ ×	/ ×	, ×	/ ×	, ×	/ ×
		1			1	

...

(
C _P	/ X'/ + / (-X')/	ASHAR guide and Data book
K p(j/m.s)	K p = / X' / + / (-X') /	R.L.Earle (unit Operations in food processing above freezing page)
λp(kj/kg)	λp= Χ'/	R.L.Earle (unit Operations in food processing above freezing page)
A_{w}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Chou et al
H _w (kj/kg)	$H_{w} = E X_{m} + / E X_{m}$ $- E X_{m} + / E X_{m}$ $+ E ; (/ \leq X_{m} \leq /)$	Keey

.

www.SID.ir

•

$$\frac{\partial \left(\rho_{p}C_{pg}T_{p}\right)}{\partial t} = \frac{1}{r} \left[\frac{\partial \left(rk_{p}\right)}{\partial r}\frac{\partial T_{p}}{\partial r}\right] + Q_{r} \qquad ()$$

. :

 $\pm k_{P}A_{P}\frac{\partial T_{P}}{\partial r} = h_{t}A_{P}(T_{g} - T_{P}) + k_{m}(Y_{e} - Y_{\infty})\Delta H^{evp}$

()

 $t = \circ \qquad \circ < r < R_P \qquad T = T_\circ$

 $t>\circ \qquad r=\circ \qquad \frac{\partial T_P}{\partial r}=\circ$

.

 $L_p/d_{p>}$

.

.

()

$$\frac{\partial(\rho_{p}X)}{\partial t} = \frac{1}{r} \left(\frac{\partial}{\partial r} \left(\rho_{p}rD_{eff} \frac{\partial X}{\partial r} \right) \right)$$
()

:

at
$$t=0$$
 $0 < r < R_P$ $X = X$ ()
at $t > 0$ $r = 0$ $\frac{\partial X}{\partial r} = 0$
at $t > 0$ $r = R_P$ $D_{eff} \frac{\partial X}{\partial r} = k_m(Y_s - Y_e)$

$$X_{avg}(t) = \frac{\Psi_{\mu}}{v_{p}} \int_{\cdot}^{R} r^{\Upsilon} X(r, t) dr \qquad ()$$

.

$$Sh = \frac{k_m L}{D_{eff}} = \cdot / \mathcal{F} \mathfrak{N} R e^{\cdot / \mathfrak{d} \mathfrak{N}^{\mathfrak{r}}} S c^{\cdot / \mathfrak{N} \mathfrak{r}} \qquad ()$$

$$T_{avg}(t) = \frac{\pi}{V_p} \int_{0}^{R} r^{v} T(r, T) dr$$

$$() ()$$

$$h_t$$

$$I = \frac{hl}{K_g} = \cdot/\pi A r^{\cdot/\pi v} R e^{\cdot/.5\pi}$$

$$Ar Re$$

 $Ar = \frac{gd_p^r(\rho_p - \rho_g)\rho_g}{\mu_g^r}$

 $Re = \frac{\rho_g V d_p}{\mu_g}$

() Hygroscopic

 D_{eff}

)

(

www.SID.ir

...

°C

•

.

- Fasina, O. O., Tyler, R. T., Pickard, M. D., Modeling the Infrared Radiative Heating of Agriculture Crops, *Drying Technology-An International Journal*, 16 (9-10), p. 2065 (1998).
- [2] Afzal, M. T., Abe, T. and Hilida, Y., Energy and Quality Aspect During Combined FIR-Convection Drying of Barely, *Journal of Food Engineering*, 42, p. 177 (1999).
- [3] Izadifar, M., Mowla, D., Simulation of a Cross-Flow Continuous Fluidized Bed Dryer for Paddy Rice, *Journal of Food Engineering*, 58, p. 325 (2003).

- [4] Hatamippour, M. S., Mowla. D., Experimental and Theoretical Investigation of Drying of Carrots in a Fluidized Bed with Energy Carrier, *Drying Technology*, **21** (1), p. 83 (2003).
- [5] Sakai, N., Hazawa, T. Applications and Advances in Far-Infrared Heating in Japan, *Trends food*, *Sci Technol*, 5, p. 357 (1994).
- [6] Naret Meeso et al. Modeling of far-infrared irradiation in paddy drying process. Journal of Food Engineering, 78(4), p. 1248 (2006).
- [7] Ginzburg, A, S., "Application of Infrared Radiation in Food Processing" London; Leonard Hill Books (1969).
- [8] Ranjan, R., Irudayaraj, J., and Jun, S., Simulation of Infrared Drying Process, Drying Technology, 20(2), p. 363 (2002).
- [9] Isengard, H. D. and Prager, H., Water Determination in Products with High Suger Content by Infrared Drying, *Food Chemistry*, 82, p. 161 (2003).
- [10] Togrul, H., Suitable Drying Model for Infrared Drying of Carrot, *Journal of food engineering*, 77, p. 610 (2006).
- [11] Sharma, G. P., Verma, R. C., Pathare. P. B., Thin-Layer Infrared Radiation Drying of Onion Slices, *Journal of food engineering*, 67, p. 361 (2005a).
- [12] Hebber, U. H., Vishwanathan, K. H. and Ramesh, M. N., Development of Combined Infrared and Hot Air Dryer for Vegetables, *Journal of Food Engineering*, 65, p. 557 (2004).
- [13] Sharma, G. P., Verma, R. C. and Pathare, P. B., Mathematical Modelling of Infrared Radiation Thin Layer Drying of Onion Slices, *Journal of food engineering*, **71**, p. 282 (2005b).
- [14] Abbasi, B. and Mowla, D., Experimental and Theoretical Investigation of Drying Behaviour of Garlic in an Inert Medium Fluidized Bed Assisted by Microwave, *Journal of Food Engineering*, 88, p. 438 (2008).
- [15] Soojin Jun and Joseph Irudayaraj, Selective far Infrared Heating System-Design and Evaluation, Drying Technology, 21 (1), p. 51 (2003).
- [16] Yang, H. W. and Gunasekaran, S., Comparison of Temperature Distribution in Model Food Cylinders Based on Maxwell's Equations and Lamberts Law During Pulsed Microwave Heating, *Journal of Food Engineering*, 64, p. 445 (2004).
- [17] Mult, A., Berna, A., Borras, M. and pinaga, F., Effect of Air Flow Rate on Drying of Carrots, *Drying Technology*,5(2), p. 245 (1987).
- [18] Bak, Y. C., Son, J. E. and Kim, S. D., Heat Transfer Characteristics of a Vertical Tube in a Fludized Bed Combustor, *Int. chem. Eng.*, 29(1), p. 166 (1989).
- [19] Salagnac, P., Glouannec, P., and Lecharpentier, D., Numerical Modeling of Heat and Mass Transfer in Porous Medium During Combined Hot Air, Infrared and Microwave Heating, *International journal of heat and mass transfer*, **47**, p. 4479 (2004).
- [20] ASHRAE Guide and Data Books, "American Society of Heating, Refrigerating and Air Conditioning Engineering", New York (2005).
- [21] Earle, R. L.,"Unit Operation in Food Processing", 2nd ed., Pergamon Press, Oxford. (1992).
- [22] Keey, R. B., "Introduction to industrial drying operations", 1st, Pergamon, New York. (1978).