

Study of Some Electric and Thermoelectric Properties of the Composition (PbTe)_{1-x} (InGaTe₂)_x for Two Different Mole Percentages of x=0.5 and x=1, in the Temperature Range (100-400) K

H. Bidadi and M. Farahani Faculty of Physics, Tabriz University, Tabriz, Iran

Abstract

In this experimental work, the polycrystalline samples of ternary compound InGaTe₂ and binary compound PbTe were initially synthesized and then by grinding and mixing given amounts of PbTe and InGaTe₂ (as impurity), two types of compounds given by the formula (PbTe)_{1-x}(InGaTe₂)_x having two different mole percentages of x=0.5 and x=1 were synthesized, respectively. By studying the variations of thermoelectric power (α) and electrical conductivity (σ) of samples versus the temperature, the values of energy gap for the above two compounds were evaluated. Experimental results show that, the pure PbTe is a typical p type semiconductor, but introducing the ternary compound InGaTe₂ into the crystal, its conductivity changes from p to n. The energy gap of PbTe is increased by increasing the mole percentage of the InGaTe₂ impurity. Increasing the impurity content, causes the conductivity to decrease. Thermoelectric power increases with the temperature and its maximum value is larger for the compound with lesser impurity content.

Key words: Polycrystal, Electrical conductivity, Thermoelectric power, Energy gap.

/

••••

()

- [1] (1989), pp, 372-380.
- [2] Materials Transaction, JIM, Vol. 39, No. 6, (1998), pp. 672-678.
- [3] and A. A. Preobraghensky, Electrical and radio engineering materials, Mir Publishers, Moscow, 1980. () []