

تاثیر مخلوط پودری نانوساختار آلومینا-تیتانیا بر ریزساختار و خواص مکانیکی کامپوزیت Al₂O₃-20 wt%Al₂TiO₅

شهرزاد محسنی میبدی^۱، هادی برزگر بفروئی^{۳٬۲٬۱}* و تورج عبادزاده^۲

۱- دانشگاه آزاد اسلامی، واحد میبد
۲- پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، کرج
۳- دانشکده فنی، دانشگاه تربیت مدرس

تاريخ ثبت اوليه: ١٣٨٩/٠٣/١٤، تاريخ دريافت نسخه اصلاح شده: ١٣٨٩/٠٤/٢٥، تاريخ پذيرش قطعي: ١٣٨٩/٠۶/٢١

چکیدہ

در این تحقیق از مخلوط نانوپودرهای اکسید تیتانیوم و آلومینا جهت ساخت کامپوزیت Al22TiO5-20wt/%Al2TiO5 با استفاده از روش زینتر واکنشی استفاده شد. جهت سینتر واکنشی، نمونهها در دماهای °۲۰۰۵، ۱۴۰۰ و ۱۵۰۰ حرارت داده شدند. نتایج حاصل از الگوی پراش اشعه ایکس (XRD) نشان داد در هر سه دما فازهای اصلی Al2TiO₅ و Al2O3 تشکیل شده است. با سینترینگ نمونهها تا دمای ۱۵۰۰۰^۵ دانسیته نمونه تا ۹۶/۹ درصد دانسیته تئوری افزایش یافت. تصاویر SEM نشان داد که فصل مشترک مناسبی بین دانههای Al2O3 و Al2TiO دانسیته نمونه تا ۹۶/۹ درصد دانسیته تئوری افزایش یافت. تصاویر SEM نشان داد که فصل مشترک مناسبی بین دانههای Al2O3 و Al2TiO دو جورمگی به ترتیب تا Al2 GPa رو ۲۰۵۰ ماکر افزایش مییابد.

و*اژههای کلیدی*: پودر نانوساختار، آلومینا، آلومینیوم تیتانات، ریزساختار، خواص مکانیکی.

۱- مقدمه

آلومینا به طور وسیع در بسیاری از زمینهها به دلیل خواص عالی آن، مانند دمای ذوب بالا، استحکام، سختی، مقاومت به خوردگی و سایش مورد استفاده قرار میگیرد [۱]. با این حال دمای زینترینگ نسبتا بالا و چقرمگی شکست پایین، کاربردهای آن را در برخی از حوزهها محدود کرده است. این امر اثبات شده است که

اضافه کردن فازهای ثانویه مناسب به آلومینا یک راه موثر برای کاهش دمای زینترینگ، کنترل ریزساختار و در نتیجه بهبود خواص مکانیکی آن میباشد [۶–۱]. آلومینیوم تیتانات (Al₂TiO₅) یک سرامیک اکسیدی باساختار مینرال پزئوبروکیت است که با خواصی همچون ضریب انبساط حرارتی پایین(^{۲۰}K⁻¹×۱۰ – ^{۶-1}×۲۰)، رسانایی حرارتی پایین(^۲K⁻¹ (Mm²)) و مقاومت به شوک حرارتی عالی (حدود ^{۲۰}Mm) شناخته شده

نشانی: کرج، مشکین دشت، پژوهشگاه مواد و انرژی سالی: ۴-۲۰۱۹۲۱- ۲۶۹۱، دورنگار: ۸۸۸۸ ۶۲۰- ۲۶۱، پستالکترونیکی: hadi.merc@gmail.com

^{*} عهدەدار مكاتبات: هادى برزگر بفروئى

است [۷-۹]. به عنوان مثال، Al₂TiO₅ کاندیدای خوبی برای کاربردهایی از قبیل قطعات دارای مقاومت به شوک و عایق حرارتی خوب، صنعت متالورژی، صنعت شیشه، صنعت اتومبیل، دیرگداز، اجزای موتور، نگه دارندههای حرارتی و غیرہ میباشد [۱۰، ۹، ۷]. Al₂TiO₅ یک افزودنی مناسب است که به عنوان فاز ثانویه می تواند خواص حرارتی کامپوزیتهای ماتریس سرامیکی را بهبود بخشد. علاوه بر این Al₂TiO₅ می تواند به عنوان فاز ثانویه برای بهبود چقرمگی شکست Al₂O₃، ناشی از افزایش تنشهای موضعی باقیمانده تحریک شده به دلیل عدم انطباق زیاد بین ضرایب انبساط حرارتی Al₂O₅ و Al₂TiO₅ به کار رود Al₂TiO₅]. مشاهده شده است که افزودن Al₂TiO₅ به Al₂O₃ منجر به خواص بهتر تحمل عيوب مي گردد Al₂O₃ - Al₂TiO₅ که ایرانیکی Al₂O₃ - Al₂TiO₅ که شامل خواص مطلوب Al₂O₅ و Al₂TiO₅ بوده و خواص کاربردی همانند خواص ساختاری را نشان میدهد، کاربردهایی همچون پوشش نگه دارنده حرارتی، اجزای فیلتر اگزوز موتورهای دیزل و زیرلایههای سرامیکی دما بالا يبدا كرده است [۱۴-۱۱].

از طرف دیگر محققان [۱۷] نشان دادند که استحکام مکانیکی و چقرمگی بالای صدف، یک نانوکامپوزیت سرامیکی طبیعی، به چرخش و تغییر شکل دانه های نانو نسبت داده می شود که به پراکندگی انرژی در صدف کمک می کند. چندین تحقیق نشان داده است که کاهش اندازه دانه در سرامیکهای آلومینایی منجر به بهبود خواص مکانیکی می شود [۲۲-۵٬۱۸]. استحکام مکانیکی سرامیک های Al₂TiO₅ نیز با کاهش اندازه دانه افزایش می یابد [۲۳]. خواص سرامیکهای پایه آلومینا به شدت به ریز ساختار نهایی آنها بستگی دارد که به طور غیر قابل مجزا از ویژگیهای پودرهای آغازین (اندازه، شکل، شیمی و غیره) تـاثير مـى. المايرد [۲۴]. كامپوزيـت Al₂O₃ - Al₂TiO₅ را مى توان به وسيله فرآيند سل- ژل، انجماد هدايت شده، سوزاندن، فرآیند متالورژی پودر، پرس گرم و غیره تولید کرد [۲۷–۲۵و ۱۴]. در کل، Al₂TiO₅ با استفاده از واکنش حالت جامد بین Al₂O₃ و TiO₂ شکل می گیرد که این به طور ترمودینامیکی بالای دمای یوتکتوئید C° ۱۲۸۰ امکان یذیر است [۲۸]. بنابراین کامیوزیت Al₂O₃ - Al₂TiO₅ را

مى توان به وسيله سنتز مستقيم از Al₂TiO₅ و Al₂TiO₅ يا واكنش حالت جامد Al₂O₃ و TiO₂ بدست آورد. مطابق ب ارزیابیها صورت گرفته، رفتار رشد دانه Al₂O₃، محدوده باریک توزیع اندازه ذرات و میانگین اندازه دانههای کوچکتر Al₂O₃ - Al₂TiO₅ در کامیوزیت های Al₂O₅ - Al₂O₃ استفاده از Al₂O₃ و TiO₂ به عنوان پودر آغازین نسبت به استفاده از Al₂O₃ و Al₂TiO₅ مفيدتر خواهد بود [۲۹]. اين نشان میدهد که انتخاب یا تولید پودرهای آغازین برای آماده سازی کامپوزیتھای Al₂O₃-Al₂TiO₅ با خواص بھبود یافته، مهم میباشد. با این حال گزارش های نادری روی تاثیر یودرهای آغازین، رفتار زینترینگ، ریزساختار و به ط_ور خ_اص، خ_واص مك_انيكي كامپوزي_ت ه_اي Al₂O₃ - Al₂TiO₅ وجود دارد [۲۹–۳۱]. فرآیند تشکیل کامپوزیتهای Al₂O₃-Al₂TiO₅ بر اساس سینتر واکنشی آلومینا و روتایل با مقدار آلومینای اضافی میاشد. در شکل (۱) دیاگرام فازی مربوطه نشان داده شده است.

آلومینا و آلومینیوم تیتانات موادی با ویژگیهای مهندسی عالی میباشند. سرامیکهای Al₂TiO₅ موادی با مقاومت به شوک حرارتی عالی میباشند ولی از نظر خواص مکانیکی ضعیف هستند. از طرف دیگر، آلومینا دارای ویژگیهای مناسبی از قبیل مقاومت سایشی عالی میباشد ولی مقاومت به شوک حرارتی پایینی دارند. از این رو با کامپوزیت کردن آلومینا و آلومینیوم تیتانات با یکدیگر

R

www.SID.ir

امکان دستیابی به کامپوزیتهایی با خواص مکانیکی بهتر و مقاومت به شوک حرارتی مناسب فراهم میشود. کامپوزیتهای آلومینا-آلومینیوم تیتانات را میتوان با استفاده از سینترینگ حالت جامد و سینترینگ پودرهای به دست آمده از روش سل-ژل تهیه کرد. در این کار، تاثیر پودرهای نانوساختار بر ریزساختار و خواص مکانیکی کامپوزیتهای Al2O3-20wt%Al2TiO5 مورد بررسی قرار گرفت.

۲- فعالیتهای تجربی

۲-۱- مواد اوليه

۵-۱۵۰ nm نانوپودر آلفا آلومینا با محدوده اندازه ذرات PL-A-AlO, Plasmachem, Germany) با سطح ویژه (PL-A-AlO, Plasmachem, Germany) تا فاز آلفا در این (BET, Gemini2375, USA) ۲۳ m^2g^{-1} کار استفاده شد که تصاویر میکروسکوپ الکترونی روبشی کار استفاده شد که تصاویر میکروسکوپ (SEM) در شکل (۲) مشاهده می شود.

شكلY: Al₂O3 و XRD (b نانو پودر Al₂O3.

با محدوده اندازه ذرات ۱۱–۲۷ مسطح ویژه با محدوده اندازه ذرات ۱۱–۲۷ مو سطح ویژه با محدوده اندازه ذرات ۱۱–۲۷ مو سطح ویژه ما محدوده اندازه ذرات ۱۱–۲۷ مو سطح ویژه ۵۵/۳ m²g⁻¹ و سطح ویژه ۵۵/۳ m²g⁻¹ ما محدوده اندازه ذرات ۱۱–۲۷ میکروسکوپ IL-۲۵ میکروسکوپ الکترونی عبوری (TEM) پودرهای تیتانیا در شکل ۳۵ نشان (Netherlands, PhilipsX'Pert) XRD داده شده است. نتایج Rabie می شود. با اندازه گیری نانوپودر تیتانیا در شکل ۳۵ مشاهده می شود. با اندازه گیری نانوپودر تیتانیا در شکل ۳۵ مشاهده می شود. با اندازه گیری یودر تیتانیا به ترتیب دارای ۷۷ و ۳۳ درصد فاز آناتاز و روتایل با استفاده از میکروسکوه می بودر تیتانیا به ترتیب دارای ۷۷ و ۳۳ درصد فاز آناتاز و روتایل میاهده اند که می بود. با استفاده از می بود می برایر با ۲۵ می مد که ما می بود. با استفاده از می برایر با ۲۵ می بود ما می بود. با استفاده از می برایر با ۲۵ می بود. با استفاده از تعیین شد.

شكل ۲۳: TEM (a و XRD (b يانوپودر TiO₂.

۲-۲- روش انجام کار ۲-۲-۱- آماده سازی پودر نانوکامپوزیت

جهت آماده سازی پودر نانوکامپوزیت، پودرهای آلومینا و تیتانیا با نسبت استوکیومتری درون کاپهای پلی اتیلنی با محیط ایزوپروپانول ریخته شدند و با استفاده از گلولههای آلومینایی به مدت ۲۴ ساعت بالمیل شدند. سپس پودرهای کامپوزیتی به مدت ۳۰ دقیقه آلتراسونیک و در نهایت بر روی صفحه داغ خشک شدند. در ادامه جهت متراکم سازی بهتر پودرها، گرانولهایی با استفاده از الکهای مش ۳۰، ۵۰ و ۸۰ تهیه شدند.

۲-۲-۲- متراکم سازی

جهت آماده سازی نمونه، پودرهای نانوکامپوزیت با استفاده از پرس یک محوره با فشار پرس MPa ۲۰۰–۱۰۰ و به صورت قرصهایی با قطر ۱۰mm و ضخامت ۳ سرس شده در شدند. در شکل (۴) دانسیته نسبی پودرهای پرس شده در فشار پرسهای مختلف مشاهده میشود. با افزایش فشار پرس از ۲۰/۴ به ۲۰۰۷ دانسیته نسبی نمونهها با سرعت فشار پرس تغییر زیادی در دانسیته مشاهده نمیشود. همچنین مشاهده میشود که افزایش فشار پرس از MPa همچنین مشاهده میشود که افزایش فشار پرس از ۲۰۰ ماهده نمیابد که

شکل ۴: دانسیته خام نمونههای پرس شده در فشار پرسهای مختلف.

۲-۲-۳- سینترینگ

سینترینگ قطعات خام با استفاده از کوره های معمولی و در اتمسفر هوا و در دمای ۱۳۰۰، ۱۴۰۰ و ۱۵۰۰ درجه

سانتی گراد و با سرعت گرمایش ۲۰۰۱ مورت گرفت. شکل (۵) دانسیته نمونههای سینتر شده در دمای مثاهده می شود که با افزایش فشار پرس تا ۴۰۰MPa دانسیته نمونهها افزایش و با افزایش بیشتر فشار پرس دانسیته کاهش مییابد. کاهش دانسیته با افزایش فشار پرس به علت ایجاد عیب لایهای در حین شکلدهی نمونهها می باشد. بنابراین فشار پرس بهینه جهت شکلدهی نمونهها، ۴۰۰MPa می باشد.

شکل ۵: دانسیته نمونههای زینتر شده در دمای °۵۰۰۵ در فشار پرسهای مختلف.

۲-۲-۴ بررسی ریزساختار و استحکام

جهت بررسی ریزساختار، نمونهها پس از پولیش و اچ حرارتی با استفاده از میکروسکوپ الکترونی روبشی (SEM) مورد مطالعه قرار گرفتند. جهت اندازه گیری سختی و چقرمگی به ترتیب از فرمولهای (۱) و (۲) استفاده شد.

$$H_v = 1.854 P/d^2$$
 (1)

$$K_{IC} = 0.0016(E/H_v)^{1/2}(P/C^{3/2})$$
 (7)

در اینجا K_{IC} ،E ،d ،P ،H_v و C به ترتیب سختی ویکرز، نیروی اعمالی، قطر اثر، مدول یانگ، چقرمگی و طول ترک است [۳۳].

JR)

۳- نتایج و بحث

الگوی پراش اشعه ایکس (XRD) نمونههای Al2O3/TiO2 زینتر شده در دماهای ۱۳۰۰، ۱۳۰۰ و ۱۵۰۰ درجه سانتی گراد در شکل (۴) نشان داده شده است. مشاهده میشود که با زینترینگ پودرها در دماهای مختلف، فازهای اصلی فقط Al2O3 و Al2TlA میباشد، که در نتیجه زینتر واکنشی بین Al2O3 و TiO2 ایجاد شده است. همچنین در نتایج الگوی پراش اشعه ایکس(XRD) پیکهای TiO2 دیده نمی شود که این نشان دهنده واکنش کامل TiO2 با Al2O3 میباشد.

شکل۶: الگوی پراش اشعه ایکس (XRD) نمونههای زینتر شده در دماهای C (a) ۲۰۰۰°C (b) ۲۰۰۰°C و ۲۵۰۰۵ (▲ : آلومینیوم تیتانات، ●: آلفا آلومینا).

دانسیته نسبی، دانسیته ارشمیدس و تخلخل نمونههای زینتر شده در دماهای مختلف در جدول (۱) نشان داده شده است. همانطور که مشاهده می شود با افزایش دما از ۵۵۰۰۵۲–۱۳۰۰، دانسیته و تخلخل به ترتیب افزایش و کاهش می یابد.

تصاویر میکروسکوپ الکترونی روبشی (SEM) نمونههای زینتر شده در دماهای مختلف با بزرگنمایی پایین در شکل ۵a-c مشاهده میشود. همانطور که دیده میشود با افزایش دما اندازه دانهها و میزان تخلخل نمونهها به ترتیب افزایش و کاهش مییابد. از طرف دیگر با افزایش دما هندسه شکل دانهها یکنواختتر میشود.

جدول ۱: دانسیته نسبی، دانسیته ارشمیدس و تخلخل نمونههای نینتی شدو در دواهای مختلف

تمونههای رینتر شده در دماهای مختلف.					
نمونه	تخلخل	دانسيته	دانسيته		
	باز %	ارشمیدس(g/cm ³)	نسبی %		
18	۸/٣	37/41	۸۷/۳		
14	۵/۴	۳/۵۹	۹۲/۱		
12	۳/۱	4/18	٩۶/٩		

در شکل C-۶۹ تصاویر SEM نمونهها در بزرگنمایی بالا مشاهده می شود. در اینجا مشاهده می شود که فصل مشترک مناسبی بین دانه ها ایجاد شده است که نشان دهنده زینترینگ مناسب می باشد که همین اتصال مناسب دانه ها منجر به افزایش خواص مکانیکی می گردد. نتایج حاصل از سختی سنجی و چقرمگی شکست نمونه های زینتر شده در دماهای مختلف در جدول (۲) مشاهده می شود. همانطور که دیده می شود با افزایش دما سختی و چقرمگی شکست افزایش می یابد که این ناشی از فصل مشترک مناسب بین دانه ها می باشد.

شده در دماهای مختلف	نمونههای سینتر ن	ی و چقرمگ <u>ی</u>	جدول ۲: سختے
---------------------	------------------	--------------------	--------------

نمونه	سختى	چقرمگی شکست
	Gpa	MPam ^{1/2}
18	۴/۸ <u>+</u> ۰/۸	2/88 <u>+</u> 0/18
14	۶/۲ <u>+</u> ۰/۵	٣/۴ <u>+</u> •/١
10	۸/۵±۰/۹	۴/YX±+/W

۴- نتیجهگیری

کامپوزیت Al₂O₃-20wt%Al₂TiO₅ وینتر Al₂O₃-20wt و زینتر واکنشی بین پودرهای نانوکاپوزیت Al₂O₃ و TiO در دماهای مختلف تهیه شد. دانسیته و تخلخل نمونهها با افزایش دما به ترتیب افزایش و کاهش یافت. نتایج الگوی پراش اشعه ایکس (XRD) نشان داد که در تمام دماهای سینترینگ و TiO₂ به طور کامل با Al₂O₃ واکنش کرده و فازهای اصلی Al₂TiO₅ و Al₂O₁ میباشد. نتایج به دست فازهای اصلی Al₂TiO₅ و Al₂O₁ میباشد. نتایج به دست آمده از خواص مکانیکی افزایش سختی و چقرمگی شکست نمونهها با افزایش دما را نشان میدهد که ناشی از فصل مشترک مناسب بین دانههای نانوکامپوزیت میباشد.

لکل ۸: تصاویر میکروسکوپ الکترونی روبشی (SEM) نمونههای با بزرگنمایی بالا زینتر شده در دماهای ۱۹۰۰ °C (a) °C (a) °C (a) ۱۹۰۰ °C (a)

R

www.SID.ir

نمونه های با بزرگنمایی پایین زینتر شده در دماهای

.۱۵۰۰ °C (b ،۱۳۰۰ °C (a

- [17] X.D. Li, Z.H. Xu, R.Z.Wang, Nano Lett., 6, 2006, 2301.
- [18] M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci., 51, 2006, 427.
- [19] A. Mukhopadhyay, B. Basu, Int. Mater. Rev., 52, 2007, 257.
- [20] V. Somani, S.J. Kalita, J. Am. Ceram. Soc., 90, 2007, 2372.

[21] V. Viswanathan, T. Laha, K. Balani, A. Agarwal, S. Seal, *Mater. Sci. Eng. R.*, **54**, 2006, 121.

- [22] M.G. Lines, J. Alloys Compd., 449, 2008, 242.
- [23] M. Nagano, S. Nagashima, H. Maeda, A. Kato, *Ceram. Int.*, 25, 1999, 681.

[24] J. Li, Y. Pan, F. Qiu, L. Huang, J. Guo, *Mater. Sci. Eng. A*, **435**, 2006, 611.

[25] M. Jayasankar, S. Ananthakumar, P. Mukundan, K.G.K. Warrier, *Mater. Lett.*, **61**, 2007, 790.

[26] M. Jayasankar, S. Ananthakumar, P. Mukundan, W. Wunderlich, K.G.K. Warrier, J. Solid State Chem., 181, 2008, 2748

[27] M.H. Berger, A. Sayir, J. Eur. Ceram. Soc., 28, 2008, 2411.

[28] I.M. Low, Z. Oo, Mater. Chem. Phys., 111, 2008, 9.

- [29] S.Y. Park, S.W. Jung, Y.B. Chung, Ceram. Int., 29, 2003, 707.
- [30] R.G. Duan, G.D. Zhan, J.D. Kuntz, B.H. Kear, A.K. Mukherjee, *Mater. Sci. Eng. A.*, **373**, 2004, 180.
- [31] J. Mani, S. Ananthakumar, P. Mukundan, K.G. Warrier, J. Am. Ceram. Soc., **90**, 2007, 3091.
- [32] B.D. Cullity, 2nd, Addison Wesley Publishing Company,
- Inc., Massachusetts, 1978, 100.[33] M. Mazaheri, M. Valefi, Z. Razavi Hesabi, S.K.
- Sadrnezhaad, *Ceram Int.*, **35**, 2009, 13.

- [1]L.A. Bendersky, A.J. Zambano, Mater. Sci. Eng. B, 142, 2007, 139.
- [2] Q. Yan, Z. Huang, G.Y.Wang, D. Jiang, J. Alloys Compd. 461, 2008, 436.
- [3] Z. Xiu, J. Laeng, X. Sun, Q. Li, S.K. Hur, Y. Liu, J. Alloys Compd., 458, 2008, 398.
- [4] Q. Yan, G.Y.Wang, Z. Huang, D. Jiang, J. Alloys Compd., 467, 2009, 438.
- [5] J.F. Bartolome, C.F. Gutierrez-Gonzalez, R. Torrecillas, Compos. Sci. Technol., 68, 2008, 1392.
- [6] C.J.Wang, C.Y. Huang, Mater. Sci. Eng. A, 492, 2008 306.
- [7] C.H. Chen, H. Awaji, J. Eur. Ceram. Soc., 27, 2007, 13.
- [8] R. Naghizadeh, H.R. Rezaie, F. Golestani-Fard, Mater. Sci. Eng. B, 157, 2009, 20.
- [9] T. Ono, Y. Sawai, M. Ikimi, S. Obata, O. Sakurada, M. Hashiba, *Ceram. Int.*, 33, 2007, 879.
- [10] R.D. Skala, D. Li, J. Eur. Ceram. Soc., 29, 2009, 67.
- [11] N.P. Padture, S.J. Bennison, H.M. Chan, J. Am. Ceram. Soc., **76**, 1993, 2312.
- [12] J.L. Runyan, S.J. Bennison, J. Eur. Ceram. Soc., 7, 1991, 93.
- [13] I.M. Low, Mater. Res. Bull., 33, 1998, 1475.
- [14] C. Baudin, M.H. Berger, Acta Mater., 54, 2006, 3835.
- [15] S. Bueno, M.H. Berger, R. Moreno, C. Baudin, J. Eur. Ceram. Soc., 28, 2008, 1961.
- [16] S. Bueno, M.G. Hernandez, T. Sanchez, J.J. Anaya, C. Baudin, *Ceram. Int.*, **34**, 2008, 181.

