

.

(Slack et al, 1984, Henry and Guidotti, 1985)

((O,OH) . NAA (Nicholson, 1980, .Slack, 1982, Willner, 1992) .(Slack, 1982) % .(Henry and Guidotti, 1985) (Leeman and Sisson, 1996, .Sperlich et al, 1996) .() .(Torres- Ruiz et al., 2003) .() Olympus BH2 : :) Cameca SX50

.**(a)**

.(b)

www.SID.ir

www.SID.ir

	تورمالينيت استراتي فرم				سنگھای پگماتیتی					رگەھاي كوارتز- تورمالين								
SiO ₂	179/97	1°V/10	۲۷/۱۲	۳۷/۰۹	15/01	rv/1r	۲۷/۰۳	10/01	۳۷/۰۷	TV/90	19/91	19/91	17/17	1.1/.4	rv/•r	36/68	36/08	19.00
TiO ₂	•/97	•/**	•/*A	•/11	•/9V	٠/٢٨	•/9V	•/٧1	•/179	• /9 •	•/09	•/97	•/17	•/11	•/10	•/٢٢	•/91	1/19
Al ₂ O ₃	۲۳/۸۰	177/99	177/71	14/+1	177/9/	117/70	177/99	דד/דד	TT/A¥	177/41	177/97	177/10	177/19	177/00	TT/9A	17/19	177/01	11/01
FeO	٧/٢٢	N01	V/YO	٧/•۶	V/90	٧/٩٨	AVY	9/17	9/1A	91.9	8/14	۲۸\Y	81.9	F/TT	9/•9	\$/1¥	٩/•٨	NAY
MgO	1/10	۲/۸۶	17/47	1/11	¥/•V	۳/۸۹	17/99	۵/۳۳	۵/۰۳	0/1"7	0/11	¥/V.	0/91	۵/۸۳	8/17	۵/۳۷	۵/۰۵	۳/۸۳
CaO	•/1*9	1/11	•/*1	•/04	•/۴١	• <i>N</i> 9	•//M	•/90	•/99	• <i>/</i> \/*	•/9V	•/91	•/AY	•/٧٩	•/۵۸	1/•1	•/**	•/AY
MnO	•/•۵	•/•V			۰/۰۱۳	•/•۵	۰/۰۸	•/•V	•/•۵	•/•¥		•/•*		•/•۵	•/•٢		•/•Y	•/•9
Na ₂ O	۲/۳۱	1/40	۲/۲۹	1/01	۲/۰۱	۲/۱۷	1/51	۲/۳۱	۲/۲۶	۲/۰۹	1/1/	1/01	۲/۲۸	7/19	۲/۰۴	1/٨٣	1/41	7/97
K ₂ O	•/•)*	•/• ٢	•/•1	•/•٣	•/• ٢	•/•1	•/•¥	•/•1*	•/•*	•/• ٢	•/•٣	•/•1	۰/۰۴	•/•1	•/•1	•/• ٢	•/•1	•/•*
H ₂ O	۳/۶۷	۲/۶۴	۴/۶۸	۴/۶۶	۴/۶۶	٣/۶۵	۲%	۲/۷۰	۳/۶۸	۳/۶۸	۴/۶۷	۲/۶۲	ዮ/ቶለ	۴/۶۹	۳/۶۹	۳/۷	¥7/¥A	۴/۶۰
B ₂ O ₃	1./99	1./00	1./99	1./91	1.19.	1./09	1./00	1.//1	1./97	1.199	1./94	1./19	۱۰/۶۸	۱۰/۶۸	1./99	1•/V1	1./9.	1./99
Total	1/11	99/97	1/17	99/17	99/VA	99/91	99/109	1/*1	1++/+V	99/20	99/0V	99/91	1/11	1/11	1/.9	1/17	1/97	99/17
فرمول ساختماتی بر اساس (۲۱(O,OH																		
Si	0/9.41	9/119	91.01	91.49	9/.11	91.90	9/1+1	91.9.	91.9.	9/18.	9/.17	91.98	9/•OA	91.00	9/. 11	0/990	0/990	91
Al	•/• IV				Constant of											./0	./0	
В	۲/۰۰۰	۲/۰۰۰	۲/۰۰۰	۲/۰۰۰	17/	۲/۰۰۰	۲/۰۰۰	۳/۰۰۰	۲/۰۰۰	۴/۰۰۰	۲/۰۰۰	۲/۰۰۰	۲/۰۰۰	۴/۰۰۰	۳/۰۰۰	۴/۰۰۰	۴/۰۰۰	۲/۰۰۰
Al(Z)	9/	9/	9/	9/	9/	9/	9/	9/	9/	9/	9/	9/	9/	9/	9/	9/	9/	9/
Al(Y)	·/*9Y	.1.4.4	·/0Y1*	+/09A	·/09V	·/YY1	+/9++	·/٣٧1	·/*٩٨	·/170	·/#17	.110	•/1919	• / ۴۱۴۴	·/f09	·/۵۸۳	•/YYY	27111
Ti	./110	./.01	./.09	./.10	•/•At	./.10	•/• Al	•/•/٩	./. **	·/·YY	·/·Yř	·/·W	•/•٣٩	./.10	•/•1٨	·/· TV	•/111	•/191
Mg	1/•۸۴	•/9YA	•/9.01"	1/ *	•/990	·/90Y	•//49	1/190	1/111	1/191	1/1-4/	1/191	1/191	1/111	1/۴۸۴	1/177	1/117	1/14A
Mn	•/••V	+/+1+			•/••¥	•/••V	•/•11	•/•1•	۰/۰۰۷	•/••9		•/••9		•/••٧	•/••*		•/••٣	•/• 11
Fe	1/+ 19	1/174	1/+19	+/4.9V	1/+ 44	1/-90	1/1.4	۰/۸۳۰	·/٨٣٢	·/AY9	•///119	1/111	•///٢٩	•/A¥P	•/AY¥	• /٨٣٣	1/140	1/191
Y total	۲/۷۱۵	X1017	۲/۶۰۱	T/00¥	۲/۶۹۸	۲/۵۶۰	7/097	۲/۵۶۵	۲/۶۱۳	1/014	T/VYV	7/VAT	7/979	7/914	۲/۷۸۵	۲/۷۱۷	7/۸۷۲	7/770
Ca	•/•91	1/199	•/•VY	./.90	•/•VY	•/1178	•/100	•/111	•/11.	•/1YA	•/11V	•/1•٨	•/181	•/۱۳۸	•/1•1	•/179	•/•Vf	•/100
Na	·/VIT	•/977	·/V00	•/V9V	•/919	•/991	*/0T1	•/VTV	• <i>N</i> VV	•1991	·/00A	•/1991	•/\.	•/991	•/988	·/0V9	•/9•V	•/VA*
K	•/••9	•/••*	•/••٣	•/••*	•/••*	•/••*	•/••*	•/••9	•/••٨	•/••*	•/••9	•/•••	•/••\$	•/••*	•/••٣	•/••*	•/••٣	•/••٨
X total	•/٨•١	•/٨٢¥	•/٨٣١	•///1	·/Y10	•/ATV	•/979	•///19	•/٩٠٥	• /\41"	•/۶۸۱	•/9•1	•/٨۶٩	•/۸۳۱	·//¥9	·/Y09	•/۶۸۳	•/٩٣٧
X- Vac.	•/199	•/179	•/199	•/1•9	·/TAD	•/171	•/1"1"	•/101	•/•90	•/٢•٧	•/119	•/199	•/111	•/199	•/101	•/1111	•/ĩ°1V	•/•01
Fe/Fe +Mg	•/*^*	•/001*	•/019	./19.	•/011	•/010	•/077	•/*49	•/*•1	• /17.4	•/170	•/011	۰/٣٧٨	•/170	• /*OY	•/190	•/0•1	•/0•9
Na/Na +Ca	•/911	•/V91	•/911	·//\97	•//	•/ATV	•/٧٧١	•/٨٩٥	•/٨۶۶	•/٨٣٨	•/ATV	•///19	•////*	•/٨١٣	•/٨94	•/٧۶٧	•///٩١	•/٨٣٥

Mg

Al

(London and Manning, 1995) Fe

Al

Y

Li

Al in R_2

Ζ

∑(Fe+Mg)<3 .(f) . . R₂* (Henry and Guidotti, 1985, Pesquera and Velasco, Fe-Mg-Ca Fe-Mg-Al .1997)

Al Ca

Fe³⁺

C

.(Henry and Guidotti, 1985)

Mg Fe

Al

.

www.SID.ir

(ppm)						
As	/	/	/	/	/	< /
W	/	/	/	< /	< /	<
Со	/	/	/	1	/	/
Cr						1
Zn	/	/		/	1	
Hf	/	/	/	1	1	1
Sc	/	/	/	/	Y	1
Та	/	/	/	< /	< /	< 1
Th	/	/	1	/		< /
U	1	/	1	< /	<	<
La	1	1	1	1	1	/
Ce		/	/	7	/	/
Nd	1	1	/	T	1	/
Sm	/	/		/	1	/
Eu	/		1	/	1	/
Tb	/		/	/	1	/
Tm		\mathcal{V}	/	1	/	/
Yb		1	/	1	/	/
Lu		1	/	1	/	/
∑REE		/	/	/	/	/
(La/Yb)N	/	/	/	/	/	/
(La/Sm)N	/	/	/	/	/	/

(Slack et al., 1984)

.(Gallagher, 1988)

(Torres-

(Slack et al., 1993)

Ruiz et al., 1996)

.

(Slack et al., 1984, Plimer, 1988)

1 Exhalative

.

LREE

.

.

America, Washington, DC, Rev. Mineral. Vol. 33, pp. 503–557; (1996).

- 11- D. J., Henry, C. V., Guidotti, Tourmaline as a petrogenetic indicator mineral: an example from the staurolite grade metapelites of NW- Marine, Am. mineral., Vol. 70, pp. 1-15; (1985).
- 12- W. P., Leeman, and V. B., Sisson, Geochemistry of boron and its implications for crustal and mantle processes. In: Grew ES, Anovitz LM (eds) Boron. Mineralogy, petrology and geochemistry. The Mineralogical Society of America, Washington DC, Rev. Mineral, Vol. 33, pp. 645-707; (1996).
- D., London, D. A. C., Manning, Chemical variation and significance of tourmaline from SW England, Econ. Geol., Vol. 90, pp. 495-519; (1995).
- 14- B. G., Lottermoser, Rare earth elements and hydrothermal ore processes, Ore Geol. Rev., Vol. 7, pp. 25-41; (1992).
- 15- D. A. C., Manning, Chemical and morphological variation in tourmalines from the Hub Kapong batholith of peninsular Tailand, Mineral. Mag., Vol. 45, pp. 139-147; (1982).
- 16- S. M., McLennan, Rare earth elements in sedimentary rocks, influence of provenance and sedimentary processes. In: Lipin, B. R., Mc Kay, G. A., (eds) Geochemistry and mineralogy of rare earth elements, The Mineralogical Society of America, Washington, DC, Rev. Mineral., Vol. 21, pp. 169-200; (1989).
- 17- G. B., Morgan VI, D., London, Alteration of amphibolitic wallrocks around the Tanco rareelement pegmatite, Bernic Lake, Manitoba, Am. Mineral., Vol. 72, pp. 1097-1121; (1987).
- 18- G. B., Morgan VI, D., London, Experimental reactions of amphibolite with boron-bearing aqueous

)

- 4- V., Gallagher, Coupled substitutions in schorl dravite tourmaline: New evidence from SE Ireland, Mineral. Mag., Vol. 52, pp. 637-650; (1988).
- 5- H. Z., Harraz, M. F., El-Sharkawy, Origin of tourmaline in the metamorphosed Sikait pelitic belt, south eastern desert, Egypt, Jour. Afr. Earth Sci., Vol.33, pp.391-416; (2001).
- 6- F. C., Hawthorne, D. J., Henry, Classification of the minerals of the tourmaline group. Eur. Jour. Mineral., Vol. 11, pp.201-215; (1999).
- 7- F. C., Hawthorne, Bond valence constraints on the chemical composition of tourmaline, Can. Mineral., Vol. 40, pp. 789-797; (2002).
- 8 D. J., Henry, B. L., Dutrow, Ca substitution in Lipoor aluminous tourmaline, Can. Mineral., Vol. 28, pp.111-124; (1990).
- 9- D. J., Henry, B. L., Dutrow, Tourmaline in a low grade classic metasedimentary rock: an example of the petrogenetic potential of tourmaline, Contrib. Mineral. Petrol., Vol. 112, pp. 203-218; (1992).
- 10- D. J., Henry, B. L., Dutrow, Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anovitz LM (eds) Boron. Mineralogy, petrology and geochemistry. The Mineralogical Society of

Trans. Instn. Min. Metall, (Sect. B: Appl. Earth Sci.), 91:B 81- B89; (1982).

- 26- J. F., Slack, N., Herriman, R. G., Barnes, I. R., Plimer, Stratiform tourmalinites in metamorphic terranes and their geologic significance, Geol., Vol. 12, pp. 713-716; (1984).
- 27- J. F., Slack, M. R., Palmer, B. P. J., Stevens, R. G., Barnes, Origin significance of tourmaline-rich rocks in the Broken Hill district, Australia, Econ. Geol. Vol. 88, pp. 505-541; (1993).
- 28- J. F., Slack, C. W., Passchier, J. S., Zhang, Metasomatic tourmalinite formation along basementcover décollements, orobic Alps, Italy, Schweiz, Mineral, Petrogr. Mitt, Vol. 76, pp. 193-207; (1996).
- 29- R., Sperlich, R., Gieré, M., Frey, Evolution of compositional polarity and zoning in tourmaline during prograde metamorphism of sedimentary rocks in the Swiss Central Alps. Am. Mineral., Vol. 81, pp. 1222-1236; (1996).
- 30- S., R., Taylor, S., M., MacLennan, The continental crust: Its composition and evolution, Blackwell, Oxford, 312p; (1985).
- 31- J., Torres-Ruiz, A., Pesquera, P.P., Gil Crespo, J., Cases, Tourmalinites and Sn-Li mineralization in the Valdeflores area (Cáceres, Spain), Mineral. Petrol., Vol. 56, pp. 509-223; (1996).
- 32- J., Torres-Ruiz, A., Pesquera, P.P., Gil Crespo, N., Velilla, Origin and petrologenetic implications of tourmaline-rich rocks in the Sierra Nevada (Betic Cordillera, southeastern Spain), Chem. Geol., Vol. 197, pp. 55-86; (2003).
- 33- M. G., Truscott, D. M., Shaw, Boron in chert and Precambrian siliceous iron formations, Geochim. Cosmochim. Acta., Vol. 48, pp. 2220-2313; (1984).
- 34- A. P., Willner, Tourmalinites from the stratiform peraluminous metamorphic suite of the Central Namaqua Mobile Belt (South Africa), Mineral. Depos., Vol. 27, pp. 304-313; (1992).

fluids at 200 MPa: implications for tourmaline stability and partial melting in mafic rocks, Contrib. Mineral. Petrol., Vol. 102, pp. 281-297; (1989).

- 19- P. M., Nicholson, The geology and economic significance of the Golden Dyke dome, Northern Territory in Ferguson, J., and Goleby, A. B., (eds), Uranium in the Pine Creek geosyncline: Vienna, International Atomic Energy Agency, pp. 319-334; (1980).
- 20- A., Pesquera, F., Velasco, Mineralogy, geochemistry and geological significance of tourmaline-rich rocks from the Paleozoic Cinco Villas massif (western Pyrenees, Spain), Contrib. Mineral. Petrol., Vol. 129, pp. 53-74; (1997).
- 21- A., Pesquera, J., Torres-Ruiz, P. P., Gil-Crespo, N., Velilla, Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Cáceres, Spain), Am. Mineral., Vol. 84, pp. 55-69; (1999).
- 22- A., Pesquera, J., Torres-Ruiz, P. P., Gil-Crespo, S. Y., Jiang, Petrographic, Chemical and B-isotopic insights into the origin of tourmaline-rich rocks and boron recycling in the Martinamor Antiform (Central Iberian Zone, Salamanca, Spain), Jour. Petrol., Vol. 46, pp. 1013-1044; (2005).
- 23- I. R., Plimer, Tourmalinites associated with Australian Proterozoic submarine exhalative ores, In: Friedrich, G. H., Herzig, P. M. (eds), Base Metal Sulfide Deposits in sedimentary and volcanic environments, Springer-Verlag, Berlin, pp. 255-283; (1988).
- 24- J. G., Raith, N., Riemer, N., Schoner, T., Meisel, Boron metasomatism and behaviour of rare earth elements during formation of tourmaline rocks in the eastern Arunta Inlier, central Australia, Contrib. Mineral. Petrol., Vol. 147, pp. 91-109; (2004).
- 25- J. F., Slack, Tourmaline in Appalachian-Caledonian massive sulphide deposits exploration significance,