شماره ٦٤ تابستان ١٣٨٦

بررسی طیف چرخشی ملکولCF_rCCD در حالت پایه ارتعاشی – الکترونی

اردشیر ابراهیمی* گروه شیمی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران کریم زارع گروه شیمی، دانشکده علوم، دانشگاه شهید بهشتی، اوین، تهران، ایران مسعود معتمدی گروه شیمی، دانشگاه تربیت مدرس، تهران، ایران علی اکبر حاصل کریمی گروه شیمی، دانشگاه تهران، تهران، ایران

چکیدہ:

طیف چرخشی موج میلیمتری ملکول $\mathrm{CF_{r}CCD}$ درحالت پایه ارتعاشی – الکترونی اندازه گیری شد. از $D_{\mathrm{J}} = ./71004 \ \mathrm{kHz} \ D_{\mathrm{Jk}} = ...71026 \ \mathrm{kHz}$ مانند $J_{\mathrm{Jk}} = ...71026 \ \mathrm{kHz} \ J_{\mathrm{Jk}} = ...71007 \ \mathrm{kHz}$ $H_{\mathrm{kJ}} = ...7107 \ \mathrm{mHz} \ \mathrm{mHz} = ...71007 \ \mathrm{mHz}$ $H_{\mathrm{kJ}} = ...7107 \ \mathrm{mHz} \ \mathrm{mHz} \ \mathrm{mHz} = ...7107 \ \mathrm{mHz} \ \mathrm{mz} \ \mathrm{mz}$

واژه های کلیدی: ملکولCFrCCD، طیف چرخشی، حالت پایه ارتعاشی – الکترونی

مقدمه:

ملکولی چرخنده متقارن دوکی شکل و دارای دو ممان اینرسی برابر $(I_a \neq I_b = I_c)$ است. طیف این ملکول قبلا توسط افراد دیگری مطالعه شده است^[۱-۳]. ممان دوقطبی این ملکول D ۲/۳۲٤ است به طوری که این عامل سبب می شود پیک ها در طیف چرخشی پرشدت باشند^[3,6]. حالت ارتعاشی .۷۱ این ملکول در ^{۱–۱}۳۳ قرار دارد.

عهده دار مكاتبات

طیف چرخشی ملکولCFrCCD در حالت پایه:

در ملکول های چرخنده متقارن همانند CF۳CCD انرژی چرخشی در حالت پایه وابسته به اعداد کوانتومی J و k است و توسط معادله (۱) به دست می آید^[۷،۱]. فرکانس انتقال های چرخشی در حالت پایه بعد از رعایت قانون انتخابی 1±=Δ4 و ° =Δk به شکل معادله (۲) است:

(1)

(٣)

$$\nu = \mathbf{Y}B(J+\mathbf{1}) - \mathbf{F}D_{J}(J+\mathbf{1})^{\mathbf{r}}$$

نمودار $\overline{(J+1)}$ برحسب $(J+1)^{Y}$ خط راستی را به دست می دهد که شیب و عرض از مبداء آن به ترتیب EDJ - eDJ - eB است. این نمودار برای k های ۰ تا ۱۲ برای J های ۱۲ ، ۱۳ ، ۱۷ ، ۲۱ و ۲۷ در شکل (۱) نشان داده شده است. این نمودار یک دسته خطوط موازی را نشان می دهد که فاصله بین آنها در k های بالاتر زیاد می شود. از مقادیر B و DJ به دست آمده در هر k می توان میانگین گرفت و آنها را به عنوان مقادیر اولیه در نظر گرفت. میانگین مقادیر اولیه B و DJ برای این ملکول در حالت پایه به ترتیب برابر T۹۵/۸ MHz و ۲۹۵/۰ است.

شکل ۱- نمودار $\frac{v}{(J+1)}$ برحسب $(J+1)^{r}$ در حالت پایه شکل ۱- نمودار (J+1)

در معادله (۳) تنها از دو پارامتر B و DJ در محاسبه انرژی استفاده شده است ولی شکل (۱) نشان می دهد که خطوط رسم شده در k های مختلف با هم تفاوت می کنند. این شکافتگی ناشی از پارامتر DJK است که سبب می شود انرژی k ها متفاوت باشند ، همان طور که این شکل نشان می دهد جدایی بین خطوط در k های بالاتر بیشتر است. اگر انرژی تنها وابسته به J بود در شکل (۱) تنها یک خط وجود داشت ولی چون هر k انرژی متفاوتی دارد چندین خط مشاهده می شود که این جدایی بین خطوط ناشی از پارامتر DJK است. با در نظر گرفتن معادله (3) و با رسم <u>(</u> () و با رسم <u>(</u> () برحسب x در لهای ثابت ، خط راستی با شیب JJ ست. با در نظر گرفتن معادله به دست آمده در هر J می توان میانگین گرفته و آنرا به عنوان مقدار اولیه JJ در نظر گرفت. این نمودار برای ۲۱= به دست آمده در هر J می توان میانگین گرفته و آنرا به عنوان مقدار اولیه JJ در نظر گرفت. این نمودار برای ۲۲= به دست آمده در هر J می توان میانگین گرفته و آنرا به عنوان مقدار اولیه JJ در نظر گرفت. این نمودار برای ۲

J=۱۲ شکل ۲- نمودار
$$rac{
u}{(J+1)}$$
 برحسب \mathbf{k}^{r} برای ملکول CF_rCCD در حالت پایه در $(J+1)$

$$v = rB(J+1) - rD_{I}(J+1)^{r} - D_{Ik}(J+1)k^{r}$$

نتايج:

()

فرکانس های به دست آمده در J های ۱۲ ، ۱۳ ، ۱۷ و ۲۷ توسط برنامه Symf با روش حداقل مربعات و با استفاده از مقادیر اولیه پارامترها که از طریق رسم نمودار به دست آمدند ، در معادله (۲) برازش شدند. وزن آماری داده شده به فرکانس های مشاهده شده برابر $\frac{1}{(\circ/1)} = \frac{1}{\sigma^2} = W$ است که در آن ۰/۱ برابر مقدار نایقینی فرکانس مشاهده شده است^[۱۸–۱۲]. تعدادی از فرکانس ها نایقینیMHZ است که به خاطر پهنای پیک های مربوطه است. برازش فرکانس ها همراه با مقادیر O-C درجدول (۱) و مقادیر پارامترها همراه با مقدار نایقینی هرکدام در جدول (۲) آورده شده است.

	J'	' K	Observed	Calc	Obs-Calc	Error
	12	 0	70095 7500	70095 7559	-0 0059	0 1000
2	12	1	70095 5850	70095 5955	-0.0105	0 1000
2.	12	2	70095 0980	70095.3933	-0 0163	0.1000
5.	12	2	70093.0980	70093.1143	0.0103	0.1000
ч. с	10	3	70094.3170	70094.3122	0.0048	0.1000
5.	10	-4 F	70093.1830	70093.1093	-0.0043	0.1000
о. 7	12	5	70091.7370	70091.7454	-0.0084	0.1000
7.	12	0	70089.9820	70089.9806	0.0014	0.1000
8.	12	/	/008/.8900	/008/.8946	-0.0046	0.1000
9.	12	8	70085.5130	70085.4875	0.0255	0.1000
10.	12	9	70082.7900	70082.7590	0.0310	0.1000
11.	12	10	70079.7450	70079.7092	0.0358	0.1000
12.	12	11	70076.3620	70076.3378	0.0242	0.1000
13.	12	12	70072.6570	70072.6446	0.0124	0.1000
14.	13	0	75487.1900	75487.3930	-0.2030e	xcluded
15.	13	1	75487.1900	75487.2203	-0.0303	0.2000
16.	13	2	75486.6550	75486.7022	-0.0472	0.1000
17.	13	3	75485.7880	75485.8385	-0.0505	0.1000
18.	13	4	75484.5890	75484.6294	-0.0404	0.1000
19.	13	5	75483.0580	75483.0747	-0.0167	0.1000
20.	13	6	75481.1710	75481.1743	-0.0033	0.1000
21.	13	.7	75478.9440	75478.9282	0.0158	0.1000
22.	13	8	75476.3600	75476.3363	0.0237	0.1000
23.	13	9	75473.4280	75473.3984	0.0296	0.1000
24.	13	10	75470.1390	75470.1144	0.0246	0.1000
25.	13	11	75466.4940	75466.4841	0.0099	0.1000
26.	13	12	75462.6140	75462.5074	0.1066	0.1000
27.	13	13	75458.1430	75458.1842	-0.0412	0.1000
28.	17	0	97052.9100	97053.1221	-0.2121e	xcluded
29.	17	1	97052.9100	97052.9002	0.0098	0.2000
30.	17	2	97052.2000	97052.2344	-0.0344	0.1000
31.	17	3	97051.1000	97051.1248	-0.0248	0.1000
32.	17	4	97049.5600	9/049.5/12	-0.0112	0.1000
33.	17	5	97047.5700	9/04/.5/30	-0.0036	0.1000
34.	17	6	97045.1200	97045.1320	-0.0120	0.1000
35.	17	/	97042.2300	97042.2461	-0.0161	0.1000
30. 27	17	0	97036.9200	97030.9130 0702E 1410	0.0042	0.1000
20	17	10	97039.1400	97035.1410	-0.0010	0.1000
20.	17	11	97030.9000	97030.9210	-0.0210	0.1000
40	17	12	97020.2700	97020.2373	0.0127	0.1000
40.	17	13	97021.1800	97021.1478	-0.00322	0.1000
42	17	14	97009 4900	97019.5930	-0.1026	0.2000
43	17	15	97003 2700	97003 1463	0.1020	0.2000
44	17	16	96996.2700	96996.2538	0.0162	0.1000
45	17	17	96988 9000	96988 9148	-0.0148	0 1000
46	21		118617 2840	118617 2781	0.0059	0 1000
47	21	1	118617.0630	118617.0071	0.0559	0.1000
48	21	2	118616,2180	118616,1941	0.0239	0.1000
49.	21	3	118614.8660	118614.8390	0.0270	0.1000
50.	21	4	118612.9940	118612.9417	0.0523	0.1000
51.	21	5	118610.5370	118610.5023	0.0347	0.1000
52.	21	6	118607.5080	118607.5205	-0.0125	0.1000
53.	21	7	118603.9460	118603.9963	-0.0503	0.1000
54.	21	8	118599.8770	118599.9294	-0.0524	0.1000
55.	21	9	118595.3140	118595.3196	-0.0056	0.1000
56.	21	10	118590.1790	118590.1669	0.0121	0.1000
57.	21	11	118584.5110	118584.4708	0.0402	0.1000
58.	21	12	118578.2580	118578.2311	0.0269	0.1000
59.	21	13	118571.4330	118571.4476	-0.0146	0.1000
60.	21	14	118564.0750	118564.1200	-0.0450	0.1000
61.	21	15	118556.1970	118556.2477	-0.0507	0.1000
62.	21	16	118547.7730	118547.8306	-0.0576	0.1000
63.	21	17	118538.8550	118538.8682	-0.0132	0.1000
64.	21	18	118529.3910	118529.3600	0.0310	0.1000
65.	21	19	118519.3160	118519.3057	0.0103	0.1000
66.	21	20	118508.6690	118508.7048	-0.0358	0.1000
67.	21	21	118497.5540	118497.5566	-0.0026	0.1000
68.	27	0	150959.8800	150959.7977	0.0823	0.1000
69.	27	1	150958.9240	150959.4534	-0.5294e	xcluded
70.	27	2	150958.5190	150958.4202	0.0988	0.1000

	Sigma = Sigma.w =		0.047408 0.405504	Ċ	87 Transit 82 Degrees	tions in fi s of freedo	t m
90.	27	24	150760.9400	150760.9871	-0.0471	0.1000	
89.	27	22	150793.0000	150792.8023	0.1977	0.2000	
88.	27	20	150821.8000	150821.8307	-0.0307	0.1000	
87.	27	19	150835.3100	150835.3017	0.0083	0.1000	
86.	27	18	150848.2000	150848.0780	0.1220	0.1000	
85.	27	17	150860.2000	150860.1603	0.0397	0.1000	
84.	27	16	150871.5700	150871.5491	0.0209	0.1000	
83.	27	15	150882.2500	150882.2449	0.0051	0.1000	
82.	27	14	150892.2100	150892.2484	-0.0384	0.1000	
81.	27	13	150901.5600	150901.5598	0.0002	0.1000	
80.	27	12	150910.1300	150910.1798	-0.0498	0.1000	
79.	27	11	150918.1300	150918.1087	0.0213	0.1000	
78.	27	10	150925.2300	150925.3468	-0.1168	0.1000	
77.	27	9	150931.8540	150931.8946	-0.0406	0.1000	
76.	27	8	150937.7350	150937.7523	-0.0173	0.1000	
75.	27	7	150942.9020	150942.9202	-0.0182	0.1000	
74.	27	6	150947.3740	150947.3985	-0.0245	0.1000	
73.	27	5	150951.1480	150951.1876	-0.0396	0.1000	
72.	27	4	150954.2590	150954.2874	-0.0284	0.1000	
71.	27	3	150956.7210	150956.6983	0.0227	0.1000	

ادامه جدول ۱

نتایج حاصل از جدول های (۱) و (۲) نشان می دهد که فرکانس های مشاهده شده با استفاده از پارامترهای ورودی به خوبی برازش شده اند. مقادیر O-C (تفاضل مقادیر مشاهده شده و محاسبه شده) و انحراف استاندارد به خوبی این مطلب را تائید می کند.

در این بررسی B ، DJk ، DJ و ثابت های درجه شش به خوبی تعیین شدند. همان طور که جدول (۲) نشان می دهد $H_{kJ} < H_{kJ} < 0$ و $H_{kJ} < 0$ است که به نظر می آید این رفتار مخصوص ملکول های چرخنده متقارن دوکی شکل است. حضور پارامتر HJ در برازش فرکانس ها باعث بهبود مجموع مربع خطاها نشد و بخاطر مقدار فوق العاده کم به دست آمده ، مقدار صفر برای آن در نظر گرفته شد.

پارامتر	حالت پایه [۲]	حالت پایه (کار حاضر)
A/MHz	۵۷۳۷/۶*	۵۷۳۷/۶*
B/MHz	789 <i>8</i> /•VW	7898/08407(79)
D _J /kHz	۰/۲ <i>(۶</i>)	•/77709(74)
D _{Jk} /kHz	۶/۲	۶/۱۷۴۸(۳۰)
D _k /kHz	-	•/•*
H_{J}/mHz	-	• / • *
H _{Jk} /mHz	-	18/1(73)
H _{kJ} /mHz	-	$-\Upsilon F/\Upsilon(\Delta 1)$

جدول ۲: ثابت های چرخشی به دست آمده درحالت پایه ارتعاشی - الکترونی ملکول CFr CCD

نمودار فرترت ملکول CF_rCCD در حالت پایه:

اگر مقادیر k را برحسب فرکانس آنها رسم کنیم نمودار فرترت برای این حالت به دست می آید ، این نمودار برای J = 1 رسم و در شکل (۳) نشان داده شده است. همان طور که در این شکل مشاهده می شود در یک J مشخص با افزایش k فرکانس کاهش می یابد و شکافتگی با افزایش k زیادتر می شود که ناشی از وجود پارامتر DJk است.

اهمیّت پارامترهای مختلف در انرژی چرخشی ملکول CF۳CCD:

پارامتر B دارای بیشترین تأثیر در برازش و DJ تأثیر کمتری دارد. پارامترهای درجه شش (HkJ, HJk) دارای مقادیر کوچکی هستند و اهمیّت آنها در J ها و k های زیاد مشخص می شود که این مطلب را در شکل (٤) می توان دید. این نمودار سهم پارامتر HJk را در J های ۲۱،۱۷ و ۲۷ بر حسب مقادیر مختلف k نشان می دهد ، همان طور که مشاهده می شود هر چه مقادیر k افزایش می یابد سهم HJk نیز در انرژی زیاد می شود و این پارامتر در J و k های کوچک اثر کمتری دارد و همان طور که ملاحظه می شود ، این افزایش غیر خطی است. تأثیر JJk در J در می شود و امیت انتری دارد و همان طور که ملاحظه می شود ، این افزایش غیر خطی است. تأثیر پارامتر در J های مختلف در شکل (٥) نشان داده شده است. هر چه k افزایش می یابد اهمیّت این پارامتر در محاسبه انرژی زیادتر می شود و اهمیّت JJk در k های بالا به سرعت افزایش می یابد. بررسی ها نشان می دهد که با هما مشکل تر می شود.

شکل ٤- سهم پارامترH_{Jk} در انرژی در J ها و k های مختلف

References:

- 1- Trambarulo, R. and Gordy, W., J. Chem. Phys., 18, 1613 (1950).
- 2- Wallace, E., Trambarulo, R., Sheridan, J. and Gordy, W., *Physical Review*, **82**, 58 (1951).
- 3- Shoolery, J. N., Shulman, R. G. and William, J., Chemical Physics., **19**, 1364 (1951).
- 4- Kasten, W. and Dreizler, H., Z Naturforsch, 39a, 1003 (1984).
- 5- Masoud Motamedi, John H. Carpenter, John. G. Smith. J. Mol.Spectrosc., **221**, 23, (2003).
- 6- Carpenter, J. H., AFraser, K., Seo, P. J. and Smith, J. G., J. Mol. Spectrosc., 154, 207 (1992).
- 7- Harder, H. and Gerke, C., J. Mol.Spectrosc, 167, 24 (1994).
- 8- Berney, C. V., Cousins, L. R. and Miller, F. A., Spectrochim Acta part A., **19**, 2019 (1963).
- 9- Kroto, H. W., Molecular rotational spectra, Dover (1992).
- 10- Hollas, J. M., High resolution spectroscopy, John wiley& sons, 2 Ed (1998).
- 11- Hirota, E., J. Mol.Spectrosc., 37, 20 (1971).
- 12- Smith, J. G., J. Mol.Spectrosc., 128, 288 (1981).
- 13- Wotzel, U., Mader, H., Harder, H., Pracna, P. and Sarka, K., J. Mol. Struct., **780**, 206 (2006).
- 14- Careless, A. J. and Kroto, H. W., J. Mol. Spectrosc., 57, 198 (1975).

- 15- Friedrich, A., Gerke, C., Harder, H. and Maeder, H., Mol. Physics. 91, 697 (1997).
- 16- Smith, J. G., J. Mol.Spectrosc, 88, 126 (1988).
- 17- Carpenter, J. H., Motamedi, M. and Smith, J. G. J. Mol.Spectrosc, 175, 133 (1996).
- 18- Motamedi, M. and haseli, A., J. Mol.Spectrosc. 236, 91 (2006)

