EFFECT OF DIFFERENT NITROGEN LEVELS AND SOURCES ON YIELD, FRUIT QUALITY AND DATE BUNCH FADING DISORDER SEVERITY IN DATE PALM CV. 'MOZAFATI' IN JIROFT REGION

//: //:

		.() .()	.()			
	%	, %	.()	()	,	
()	·		.().		,	,
.()		.(')	.()	2205)		
%).	% /			()	.() .(%

.()

.

Table 1.Chemical properties of tested soil in 2 experimental years.

Cu (mg kg ⁻¹)	Zn (mg kg ⁻¹)	Mn (mg kg ⁻¹)	Fe (mg kg ⁻¹)	K (mg kg ⁻¹)	P (mg kg ⁻¹)	O.C (%)	pH^{\dagger}	ECe (ds m ⁻¹)	(cm)	Year
0.62	1.6	0.34	0.5	95	11.6	0.1	7.6	0.5	0-30	
0.34	1.6	0.16	0.28	70	12.6	0.1	7.8	0.53	30-60	First
0.38	0.75	0.84	0.36	41	10.6	0.08	8.1	0.27	0-30	
0.30	0.5	0.46	0.27	34.4	11	0.06	8.2	0.19	30-60	Second

[†] Electrical conductivity in soil saturated extract, pH with glass electrode in saturation paste, organic carbon based on oxidation with chromic acid and titration of residual acid with ferrous ammonium sulfate, P as extraction with 0.5 M ammonium bicarbonate (pH=8.5), K as extraction with 1 N ammonium acetate and Fe, Mn, Zn and Cu with DTPA method.

Table 2. Water analysis data in 2 experimental years.

Class	SAR (meg l ⁻¹)	Cl ⁻ (meg l ⁻¹)	Na ⁺ (meg l ⁻¹)	$Ca^{2+}+Mg^{2+}$ (meg I^{-1})	HCO ₃ ⁻ (meg l ⁻¹)	CO ₃ ² -	рН	EC (ds m ⁻¹)	Year
C_3S_1	0.76	1.4	2.05	14.4	2.14	0.48	7.1	0.76	First
C_2S_1	1.16	1.2	1.36	2.7	2.12	0.33	7.6	0.66	Second

) ()

MSTAT C .

. EXCEL

()

.(

Table 3. Effect of nitrogen levels and sources on yield and date bunch fading disorder in experimental years.

		tree ⁻¹)	N(700 g	tree ⁻¹)	N(900 g t	e ⁻¹)	N(1100 g tree	ean)	(Me
Ye	N. Source))))	
		(Disorder	(Disorder	Yield (Disorder	(Disorder
		Yield (kg tree ⁻¹)	(%)	Yield (kg tree ⁻¹)	(%)	(kg tree ⁻¹)	(%)	Yield (kg tree ⁻¹)	(%)
	(Urea)	8.02bc	17.94ab	14.44a	28.00ab	11.88ab	15ab	11.45AB	20.31A
		6.7c	27.2ab	9.76abc	2.00b	10.70abc	31.2a	9.05B	20.13A
Fir	(Ammonium sulfate)	14.10a	7.44ab	13.48a	_4.00ab	12.84ab	5.16ab	13.47a	5.53a
	(Ammonium nitrate)	14.104	7.4400	13.404	4.0000	12.0440	5.1040	13.474	3.33 a
	(Mean)	9.61B	17.53A	12.56A	11.33A	11.81AB	17.12A		
	(Urea)	29.62bc	22.26b	26.14bcd	19.8b	21.92cd	34.66a	25.89B	25.57A
		20.74d	34.32a	28Bcd	18.26b	25.44bcd	20.38b	24.73B	24.32A
Sec	(Ammonium sulfate)	25.78bcd	22.04b	38,4a	12.68b	31.42AB	21.4b	31.87A	19.37B
	(Ammonium nitrate)			< f					
	(Mean)	25.38B	26.21A	30.85A	17.58B	26.26B	24.48A		

[†] Means with the same letter in each row or column (small letters for means and capital letters for means of columns and rows are not significant difference in 5% level of probability.

Table 4. The effect of nitrogen levels and sources on Khalal diameter (cm).

	N level (g tr			
Mean	1100	900	700	N source
2.498B	2.463cd	2.532ab	2.500bc	Urea
2.500B	2.529ab	2.428d	2.544ab	Ammonium sulfate
2.541A	2.532ab	2.517b	2.573a	Ammonium nitrate
	2.49B	2.51B	2.54A	Mean

† Means with the same letter in each row or column (small letters for means and capital letters for means of columns and rows are not significant difference in 5% level of probability.

) %

.()

Table 5. The effect of nitrogen levels and sources on Khalal length (cm).

	N level (g tree	⁻¹)()	
Mean	1100	900	700	N source
4.054B	3.948e	4.099cd	4.115cd	Urea
4.146A	4.194ab	4.045d	4.253a	Ammonium sulfate
4.164A	4.217ab	4.106Cd	4.169bc	Ammonium nitrate
	4.083B	4.120B	4.179A	Mean

† Means with the same letter in each row or column (small letters for means and capital letters for means of columns and rows are not significant difference in 5% level of probability.

, % †

†

Table 6. The effect of nitrogen levels and sources on mean Khalal weight (g).

	N level (g tree	-1)()	
Mean	1100	900	700	N source
15.16B	14.36e	15.89b	15.14d	Urea
15.60A	15.87b	14.24e	16.68a	Ammonium sulfate
15.58A	15.62bcd	15.35cd	15.76bc	Ammonium nitrate
	15.28B	15.16B	15.89A	Mean

[†] Means with the same letter in each row or column (small letters for means and capital letters for means of columns and rows are not significant difference in 5% level of probability.

, %

Table 7. The effect of nitrogen levels and sources on mean rutab weight (g).

Mean	1100	900	700	N source
11.9B	10.90e	12.59a	12.20bc	Urea
12.07B	12.07c	11.65d	12.48ab	Ammonium sulfate
12.32A	12.72a	12.73a	11.50d	Ammonium nitrate
	11.90B	12.33A	12.06B	Mean

[†] Means with the same letter in each row or column (small letters for means and capital letters for means of columns and rows are not significant difference in 5% level of probability.

% (

†

†

). .(

Fig. 2. The effects of nitrogen levels and sources on yield of 'Mozafati' date (kg tree⁻¹)
.() '

Fig. 3. The effect of nitrogen levels and sources on intensity date palm bunch fading disorder (%).

.() .() **REFERENCES**)

21. Khayyat, M., E. Tafazoli, S. Eshghi and S. Rajaee. 2007. Effect of nitrogen, boron, potassium and zinc sprays on yield and fruit quality of date palm. American – Eurasian J. Agr. Environ .Sci. 2:289-296.

22. Ma, T.S. and G. Zuazga. 1942. Micro-Kjeldal determination of nitrogen. A new indicator and an improved rapid method. Ind. Eng. Chem. Anal. Ed.14:280-282.

