

حل کمانش پوسته استوانه ای جدار نازک از جنس آلیاژ هوشمند در دمای ثابت و بارگذاری متقارن به روش حل عددی و دقیق آلیاژهای حافظه دار(SMA)، به لحاظ خواص رفتاری در سالهای اخیر جایگاه خود را نزد اکثر مهندسان و محققان پیدا نموده است خواص مواد این آلیاژها با دما و تنش تغییر می یابند. در این تحقیق رفتار کمانش پوسته های استوانه ای نازک از جنس S.M.A بررسی خواهد شد. بدین منظور ابتدا معادلات حاکم بر رفتار تنش-كرنش و نيز سينتيك تبديل فاز آلياژهاي حافظه دار (S.M.A) استخراج مي گردد. سپس معادلات تعادل پایداری پوسته های استوانه ای نازک با خیز بزرگ استخراج می گردد. از ترکیب دو دسته معادله فوق معادلات حاکم بر رفتار پس کمانش پوسته S.M.A در جهت بار محوری بر حسب مشتقات جابجایی بدست خواهد آمد. معادلات اخیر به همراه شرایط مرزی بروش D.Q.M گسسته سازی شده و سیس دستگاه معادلات جبری حاکمه با تغییرات یله ای بار در یک سیکل کامل بارگذاری و باربرداری حل می گردد و با حل دقیق مقایسه می گردد. در این تحقیق فرض می شود پوسته نازک باشد، اثرات تنشهای برشی در تغییر فرم قابل صرفنظر کردن است، دمای پوسته ثابت است و توزیع بار محوری در لبه های لوله یکنواخت است. شرایط مرزی مستقل از مختصه 6 است. در نتیجه مساله بصورت Axisymmetric قابل حل می باشد.

هادی وحیدی' کارشناس ارشد

واژه های راهنما: آلیاژهای حافظه دار، پوسته های استوانه ای، سوپرالاستیک، کمانش متقارن

۱– مقدمه

مکانیک مواد آلیاژ هوشمند در دهه های اخیر مورد توجه و علاقه ویژه ای قرار گرفته است.همانگونه که از نامشان مشخص است این مواد شامل خانواده ای از مواد هستند که دارای خصوصیات منحصر بفردی هستند. این مشخصات وابسته به ساختار انتقال فاز این مواد (the martensite transformation) می باشند. این خصوصیت به آنها این اجازه را می دهد تا در محدوده وسیعی از صنعت از قبیل هوا فضا، ابزار دقیق، کاربردهای پزشکی و... ایفای نقش کنند. این مواد دارای خصوصت غیر معمولی هستند که قادرند کرنشهای بزرگی را در خود بازیافت نمایند و به شکل و حالت اولیه خود بازگردند، این خصوصیت و حالت مربوط به

^۱ هادی وحیدی، کارشناس ارشد، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی، واحدکرج mail.com@gmail.com hadi.vahidi56

حالت کریستالهای این مواد در برابر دما و تنش هستند. بر پایه همین اصل قادر خواهیم بود تا موادی با قابلیت انعطافی بسیار بالا طراحی نماییم. همچنین این آلیاژها دارای وزنی بسیار کم، سازگار با محیط، راحتی ساخت، و نسبت نیرو به وزن بسیار بالا می باشد نحوه عملکرد این مواد به طور دقیق مورد مطالعه قرار گرفته است و بر پایه تنوع رفتاری این مواد مدلهای مختلفی جهت انتخاب و تصمیم گیری قابل ارائه و بحث می باشند. جهت تصمیم گیری مناسب می بایست رفتار این مواد را به خوبی مورد بررسی قرار دهیم. در ادامه مروری بر خواص این مواد خواهیم داشت [۴].

خصوصیت آلیاژهای حافظه دار تغییر فاز کریستالی به عنوان تابعی از تنش، دما و تاریخچه این مواد بستگی دارند. در دماهای بالا که جسم در حالت بدون بار می باشد آلیاژ حافظه دار در فاز آستنیت می باشد. زمانی که دما به سمت دماهای پایین تر میل می کند به فاز مارتنزیت تغییر حالت می یابد. در حالت بدون تنش آلیاژهای حافظه دار دارای چهار حالت انتقال دمایی می باشد که Mf,Ms,As,Af نامیده می شوند که به ترتیب دمای نهایی تشکیل مارتنزیت (ماده کاملا در فاز آستنیت قرار دارد)، دمای شروع تشکیل فاز مارتنزیت، دمای شروع تشکیل فاز آستنیت و دمای نهایی تشکیل آستنیت (ماده کاملا در فاز آستنیت قرار دارد) نامیده می شود. تغییر فاز در میان دمای شروع و پایان آن محدوده مشخص روی می دهد. ترتیب دمایی این تغییر فازها به صورت Mf<Ms

قابل ذکر است که در بازه تغییر دما میان Ms<T<As هیچ تغییر حالت فازیی را نخواهیم داشت و هر دو فاز مارتنزیت و آستنیت در بازه Mf > T > Mf می توانند به طور همزمان در ماده وجود داشته باشند. تشکیل فاز مارتنزیت از فاز اصلی تحت شرایط بدون تنش یک انتقال خود به خودی است و مارتنزیت شکل گرفته هیچ تغییر حجم یا کرنشی را به صورت یکجا در جسم به وجود نمی آورد. مارتنزیت های مختلف تشکیل یافته به صورت کریستالی و انرژی در حالت بدون تنش معادل یکدیگرند و تنها در جهت تشکیل مارتنزیت با یکدیگر اختلاف دارند و بصورت کاملا اتفاقی در سر تا سر ماده تشکیل می شوند. زمانی که تنش را در یک جهت به آلیاژ حافظه دار اعمال می کنیم یک مقدار بحرانی بسته به میزان دما خواهیم داشت که در آن تغییر ساختاری مارتنزیت در جهت بار بوجود خواهد آمد. بعلاوه در ماده آستنیت پیش از بارگذاری نیز مقدار باری تعییر خواهند یافت. نکته حاز اهمیت این است که بار بطور آهسته باید اضافه گردد و اگر بطور ناگهانی زیاد تغییر خواهند یافت. نکته حائز اهمیت این است که بار بطور آهسته باید اضافه گردد و اگر بطور ناگهانی زیاد نماییم تغییر حالت پلاستیک در ماده رخ می دکه بار بطور آهسته باید اضافه گردد و اگر بطور ناگهانی زیاد

اگر ماده در دمای نهایی تشکیل آستنیت حرارت ببیند کرنشهای بزرگ بوجود آمده بوسیله بارگذاری و در صورت حذف بار به حالت اولیه خود باز می گردد. به این دلیل که فاز مارتنزیت تشکیل شده در این دما پایداری مناسب را نخواهد داشت و تمایل دارد به حالت اولیه خود بازگردد. اگر ماده در دمای زیر As قرار گیرد کرنشهای بزرگی در صورت حذف بار در ماده باقی خواهد ماند که در صورت اعمال حرارت به این قطعه این کرنشها نیز بازیابی می شوند. این سیکل در شکل(۱) به طور کامل نشان داده شده است(۸و۵). آلیاژهای هوشمند دو فاز پایدار دارد فاز دمای بالا که همان فاز آستنیت نام دارد و فاز دما پایین که فاز مارتنزیت نامیده می شود. فاز مارتنزیت به یکی از دو فرم زیر می باشد اول Twwinel و Twwinel که در شکل (۲) نشان داده شده است.

طی فرایند خنک کردن در حالت بدون بار ماده از آستنیت به حالت مارتنزیت Twinned تغییر حالت می یابد. تغییر فاز در آن روی می دهد و مسیر کامل بازیابی شکل خود را طی می کند. این فرایند در شکل (۲) نشان داده شده است. طی این تغییر حالت هیچگونه تغییر شکلی در ماده رخ نمی دهد. طی فرایند حرارت دهی به قطعه از حالت مارتنزیت به حالت آستنیت تبدیل می شود. این تغییر حالتها در شکل (۳) نمایش داده شده است. در حالت مارتنزیت به حالت آستنیت تبدیل می شود. این تغییر حالتها در سازد تا به حالت مارتنزیت Detwinned تبدیل می شود. حال اگر ماده را تحت دمای مربوطه Af وارد شود حالت عکس تغییر فاز در آن روی می دهد و مسیر کامل بازیابی شکل خود را طی می کند. این فرایند در شکل (۴) نشان داده شده است. چنانچه بار در حالت فاز آستنیت وارد آید و ماده شروع به خنک شدن نماید شکل (۴) نشان داده شده است. چنانچه بار در حالت فاز آستنیت وارد آید و ماده شروع به خنک شدن نماید فاز تشکیل شده مارتنزیت Twinned خواهد بود و کرنشهای بزرگی در حدود ۵ تا ۸ درصد در ماده بوجود می آیدکه با حرارت دهی به طور کامل بازیابی می شوند. این روند در شکل (۳) نشان داده شده است.

دمای تغییر فاز در این حالت بطور حتم بستگی به بزرگی بار اعمال شده دارد. مقادیر بالاتر نیروهای اعمال شده منجر به مقادیر بالاتر دمای تغییر فاز می شود. بین این دو معمولا رابطه ای به صورت خطی در نظر گرفته می شود. این رابطه در شکل (۴) نشان داده شده است [۹].

شکل *ا*- تبدیل فاز در حالت a ,b,c مارتنزیت Detwinned و

Austenite

- High temperature phase
- Cubic Crystal Structure

Martensite

- Low temperature phase
- Monoclinic Crystal Structure

شکل۲ – نمایش فازهای مختلف آلیاژهای هوشمند (اقتباس از مرجع [۹]).

شکل ۳- اثر حافظه شکل آلیاژهای هوشمند (اقتباس از مرجع[۹]).

شکل۴- رفتار شبه الاستیک آلیاژ هوشمند تحت بارگذاری (اقتباس از مرجع[۹]).

شکل۵- دیاگرام تنش -کرنش رفتار شبه الاستیک آلیاژ هوشمند (اقتباس از مرجع[۹]).

۱-۱- رفتار شبه الاستیک
این حالت زمانی بوجود می آید که نیروهای مکانیکی خالص را به قطعه وارد نماییم. نتیجه این بارگذاری فاز کامل مارتنزیت Detwinned می باشد. اگر ماده در دمای بالای Af قرارگیرد به طور کامل تغییر شکل حاصله به حالت اولیه خود باز می گردد. مسیر اثرات پیزوالاستیک در نمودار و شکل(۴) نشان داده شده است و نمودار تنش - کرنش مربوطه در شکل(۵) نشان داده شده است.

۲-۱ – خاصيت سوپر الاستيسيته

واژه سوپر الاستیک جهت توصیف خصوصیت مشخصی از آلیاژهای هوشمند به کار می روند که در صورت تغییر فرم و حذف بار به حالت اولیه خود باز می گردند. آلیاژهای سوپر الاستیک می توانند تا ده برابر بیشتر از فنرهای معمولی کرنش را تحمل کنند بدون اینکه تغییر فرمی در آنها رخ دهد. این خصوصیت غیر معمول را سوپر الاستیسیته نامیده می شود. بنابراین به عنوان یکی از مشخصه های مواد هوشمند بررسی می شوند. اگر تنش در محدوده Af و Md به قطعه وارد آید مارتنزیت تنش دار می شود. تغییر فرم کریستالی Detwined در قطعه بوجود می آید. حال چنانچه نیرو از آن حذف گردد به حالت اولیه خود باز می گردد. بالاتر از محدوده دمایی Md در صورت اعمال بار ماده به صورت معمولی تغییر فرم پلاستیک می یابد. این روند در شکل(۶) نشان داده شده است. خاصیت سوپر الاستیسیته فقط در محدوده دمایی بسیار کوچکی بالاتر از محدوده دمایی Md در صورت اعمال بار ماده به صورت معمولی تغییر فرم پلاستیک می یابد. این روند در شکل(۶) نشان داده شده است. خاصیت سوپر الاستیسیته فقط در محدوده دمایی بسیار کوچکی بالای مشاهده می شود. در محدوده دمایی پایین تر از AS کریستالهای مواد بصورت مارتنزیتی می باشند. تغییر فرمها تا حدود ۸ درصد به صورت عملیات حرارتی قابل بازیافت می باشند ولی رفتار ماده به صورت تغییر فرمها تا حدود ۸ درصد به صورت عملیات درارتی قابل بازیافت می باشند ولی رفتار داده به صورت الاستیک نمی باشد. در محدوده دمایی بالاتر از Md مواد به صورت معمول تغییر فرم می یابند.

Temperature

شکل\$– نمودار هیستریزیس انتقال فاز مارتنزیت (خاصیت سوپر الاستیسیته در محدوده دمایی سایه خورده در شکل) (اقتباس از مرجع[۱۰]).

$$Wd = \Delta \sigma^* \Delta \epsilon / P \tag{1}$$

۲- معادلات حاکم بر آلیاژهای هوشمند قانون حاکم بر آلیاژهای هوشمند به فرم دیفرانسیلی و بر پایه تغییرات اساسی به صورت ذیل قابل ارائه می باشد.

 $DS = D(E,\xi,T)dE + \Omega(E,\xi,T)d\xi_s + \theta(E,\xi,T)dt$ (7)

بطوریکه S تنش مرتبه دوم E ، Piola-Kirichhoff معرف کرنش ، کم متغیر داخلی بوده که نشانگر مراحل انتقال فاز می باشد Dمدول مواد هوشمند، Ω تانسور انتقال و hetaضریب حرارتی آلیاژهای هوشمند می باشد. کسر مارتنزیتی کم به صورت زیر قابل بیان است:

$$\boldsymbol{\xi} = \boldsymbol{\xi}_{S+} \boldsymbol{\xi}_T \tag{(7)}$$

شکل ۷ – نمودار تنش - کرنش (اقتباس از مرجع[۷]).

اندیس
$$\xi_T$$
 بیانگر کسر مارتنزیتی بر اثر حرارت می باشد و ξ_s معرف کسر مارتنزیتی که بر اساس تنش جهت یافته است می باشد. مدول یانگ به صورت تابع خطی از کسر مارتنزیت بیان می گردد.
(۴) $D(E,\xi,T) = D(\xi) = D_a + \xi(D_m - D_a)$

 D_m مدول یانگ آلیاژهای هوشمند در حالت فاز مارتنزیت (Dettwined) بوده و D_a مدول یانگ برای D_m مدول یانگ آلیاژهای هوشمند در رابطه (۱) با تابع داده شده رابطه میان مدول (D) و Ω بوسیله مشخصه مواد با ماکزیمم کرنش باقی مانده E_1 بوسیله رابطه تجربی و مواد با ماکزیمم کرنش باقی مانده E_1 بوسیله رابطه تجربی و با تبدیل ماده به حالت مارتنزیت (dettwined) و سپس بار را در دمای پایین تر از دمای شروع با تبدیل ماده به حالت مارتنزیت ($\xi_s = 1$) dettwined و سپس بار را در دمای پایین تر از دمای شروع آستنیت با را از روی جسم برداریم، لذا به طوریکه براینسون نشان داده شده است تانسور انتقال به عنوان تابعی از مدول یانگ بوسیله رابطه زیر مشخص می گردد .

$$\Omega\left(\xi\right) = -\varepsilon_1 D(\xi) \tag{a}$$

رابطه قانون مواد مرکب بصورت ذیل تبدیل خواهد شد:

$$\sigma - \sigma_0 = D(\xi)\varepsilon - D(\xi_0)\varepsilon_0 + \Omega(\xi)\xi_s - \Omega(\xi_0)\xi_{s0} + \theta(\mathbf{T} - \mathbf{T}_0)$$
(8)

$$(\mathbf{F})$$

$$(\mathbf{$$

$$T > M_s$$
 برای حالت تبدیل به مارتنزیت و

$$\sigma_{s}^{cr} + C_{m}(T - M_{s}) < S < \sigma_{f}^{cr} + C_{m}(T - M_{s})$$

$$\xi_{s} = \frac{1 - \xi_{s0}}{2} \cos\{\frac{\pi}{\sigma_{s}^{cr} - \sigma_{f}^{cr}}(s - \sigma_{f}^{cr} - C_{M}(T - M_{s}))\} + \frac{1 + \xi_{s0}}{2} \tag{Y}$$

شکل۸- نمودار تنش - دما (اقتباس از مرجع[۵]).

Archive of SID

نشريۀ پژوهشي مهندسي مكانيك ايران

$$\xi_T = \xi_{T0} - \frac{\xi_{T0}}{1 - \xi_S} (\xi_S - \xi_{S0}) \tag{(A)}$$

$$\sigma_s^{cr} < S < \sigma_f^{cr}$$
 و $T < M_s$ و T_s برای حالت تبدیل به مارتنزیت

$$\xi_{s} = \frac{1 - \xi s0}{2} \cos\{\frac{\pi}{\sigma_{s}^{cr} - \sigma_{f}^{cr}} (s - \sigma_{f}^{cr})\} + \frac{1 + \xi s0}{2}$$
(9)

$$\xi_T = \xi_{T0} - \frac{\xi_{T0}}{1 - \xi_{s0}} (\xi_S - \xi_{s0}) + \Delta T_{\xi}$$
(1.)

 $M_f < T < M_s$ اگر

$$\Delta T_{\xi} = \frac{1 - \xi_{T0}}{2} \cos[a_m (T - M_f) + 1]$$
(11)

و در غير اينصورت

 $\Delta T_{\xi} = 0$

$$:C_a(T - Af) < S < C_a(T - As)$$
 و $T > A_s$ آستنیت $T > A_s$ برای حالت تبدیل به آستنیت $T > A_s$ ($T = Af$) - $S < C_a(T - As)$

$$\xi = \frac{\varsigma_0}{2} \{ \cos[a_A(T - A_s - \frac{s}{C_A}] + 1 \}$$
(17)

$$\xi_{s} = \xi_{s_{0}} - \frac{\xi_{s_{0}}}{\xi_{0}}(\xi_{0} - \xi) \tag{17}$$

$$\xi_T = \xi_{T_0} - \frac{\xi_{T_0}}{\xi_0} (\xi_0 - \xi) \tag{14}$$

پارامترهای a_A , a_m بصورت ذیل بیان میگردند:

$$a_m = \frac{\pi}{M_s - M_f}, \qquad a_A = \frac{\pi}{A_f - A_s} \tag{10}$$

پارامترهای C_A , C_A بر طبق مدل براینسون رابطه میان دما و تنش بحرانی برای انتقال فاز مواد مرکب را بیان می دارد. همانگونه که در شکل بیان شده است در دماهای بالاتر از M_S جهت انتقال به فاز مارتنزیت و جهت دماهای پایینتر از دمای یاد شده تنش به صورت ثابت می باشد[۵]. تاکنون برای استوانه هایی از جنس آلیاژ هوشمند و جدار نازک راه حلی ارائه نگردیده است. فرم کلی معادله حاکم بر طبق معادلات Donnel به صورت زیرمی باشد :

$$D_{11}\frac{d^4w}{dx^4} + N\frac{d^2w}{dx^2} + \frac{A_{22}}{R^2}(1-\vartheta^2) = 0$$
 (19)

www.SID.ir

۲-۱- روش حل دقیق معادله حاکم بر کمانش پوسته های استوانه ای
حل عمومی معادله فوق را می توان با استفاده از معادله مفسر و تعیین ریشه ها پیدا می شود.

$$D_{11}\frac{d^4w}{dx^4} + N\frac{d^2w}{dx^2} + \frac{A_{22}}{R^2}(1-\vartheta^2) = 0,$$
 (1Y)

$$(s^{4} + \frac{N}{D_{11}}S^{2} + \frac{A_{22}}{D_{11}R^{2}}(1 - \vartheta^{2})) = 0, \qquad (1\lambda)$$

$$S^{2} = -\frac{N}{2D_{11}} \pm \sqrt{\left(\frac{N}{2D_{11}}\right)^{2}} - \frac{A_{22}}{R^{2}}(1 - \theta^{2})], \qquad (19)$$

ریشه های این معادله از قرار زیر می باشند:

$$S_{1,2,3,4} = \pm i \left[-\frac{N}{D_{11}} \pm \left[\left(\frac{N}{2D_{11}}\right)^2 - \frac{A_{22}}{D_{11}R^2}(1-\vartheta^2)\right]^{1/2}\right]^{1/2} \quad (\gamma \cdot)$$

پاسخ معادله بصورت فرم کلی زیر خواهد بود

$$W = c_1 \sin(S_1 x) + c_2 \cos(S_1 x) + c_3 \sin(S_3 x) + c_4 \cos(S_3 x) \quad (71)$$

با اعمال شرایط مرزی تکیه گاه ساده در دو سر خواهیم داشت:

$$W(x=0)=0, \ \frac{d^2w}{dx^2}(x=0)=0, W(x=L)=0, \ \frac{d^2w}{dx^2}(X=L)=0$$
 (۲۲)

$$\begin{cases} \left[\frac{N}{2D_{11}} + \left[\left(\frac{N}{2D_{11}}\right)^2 - \frac{A_{22}}{D_{11}R^2}(1 - \vartheta^2)\right]^{1/2}\right]^{1/2} = \frac{n\pi}{L}, \\ \left[\frac{N}{2D_{11}} - \left[\left(\frac{N}{2D_{11}}\right)^2 - \frac{A_{22}}{D_{11}R^2}(1 - \vartheta^2)\right]^{1/2}\right]^{1/2} = \frac{n\pi}{L}, \end{cases}$$
(77)

با اعمال شرایط مرزی در حالت شرایط تکیه گاه دو سر گیردار خواهیم داشت: $W(x=0) = 0, \quad \frac{dw}{dx}(x=0) = 0, W(x=L) = 0, \quad \frac{dw}{dx}(X=L) = 0$ (۲۴) پاسخ کلی معادله کمانش بصورت زیر می باشد: سال هجدهم، شماره دوم، پاییز ۱۳۹۵

$$W = -\frac{S_3}{S_1} \sin(S_1 x) + (\frac{\sin(S_3) - \frac{s3}{s_1} \sin(S_1)}{\cos(S_3) - \cos(S_1)}) \cos(S_1 x),$$

+ $\sin(S_3 x) - (\frac{\sin(S_3) - \frac{S_3}{S_1} \sin(S_1)}{\cos(S_3) - \cos(S_1)}) \cos(S_3 x),$ (7a)

در حالت شرایط تکیه گاه گیردار - ساده باشد خواهیم داشت

$$W(x=0)=0, \ \frac{d^2w}{dx^2}(x=0)=0, W(x=L)=0, \ \frac{dw}{dx}(X=L)=0$$
 (۲۶)
پاسخ رفتاری معادله کمانش بصورت زیر پیدا نمود:

$$W = (\sin(\mathbf{S}_3 X) - (\sin(\mathbf{S}_3 L) / \sin(\mathbf{S}_1 L)) \sin(\mathbf{S}_1 X)), \tag{(Y)}$$

$$D_{11}[C^4]W_{ij} + N[C^2]W_{ij} + \frac{A_{22}}{R^2}(1 - \vartheta^2)W_{ij} = 0, \qquad (1A)$$

$$D_{11}[c^4] + \frac{A_{22}}{R^2}(1 - \vartheta^2)][C^2]_{inv} = -N[C^2], \qquad (19)$$

$$-[C^{2}]_{inv}[D_{11}[c^{4}] + \frac{A_{22}}{R^{2}}(1 - \vartheta^{2})] = N, \qquad (\ref{eq:second})$$

$$[C_{2j}^{2}]W_{ij} = 0, W(x = L) = 0, [1 \ 0 \ 0, \dots, 0] \times W_{ij} = 0, M_{x}(x = 0) = 0, \quad (\texttt{T})$$

$$M_x(X = L) = 0, \ [C_{n-1,j}^2]W_{ij} = 0,$$

دو سر قطعه تکیه گاه گیردار:
 $W(x = 0) = 0, [1 \ 0 \ 0,, 0] \ W_{ij} = 0, \frac{dw}{dx}(x = 0) = 0,$
 $[C_{2j}^2] \ W_{ij} = 0, \ W(x = L) = 0, \ [1 \ 0 \ 0,, 0]W_{ij} = 0,$ (۲۲)

www.SID.ir

Archive of SID

۷١

۳- بررسی همگرایی حل معادله

$$\begin{aligned} \frac{dw}{dx}(\mathbf{x} = \mathbf{L}) &= 0, \ [\mathbf{C}_{n-1, j}{}^{1}] W_{ij} = 0, \\ &: \\ \text{ce ur, Edsta Tables, where the set of the s$$

جدول1– بررسی همگرایی بار کمانش بحرانی استوانه جدار نازک از جنس آلیاژ هوشمند در دمای ۲۸ درجه سانتی گراد تکیه گاه ساده.

تکیه گاه ساده در دمای ۲۸ درجه سانتی گراد						
kpa بار اوليه	گام	بار بحرانی از روش kpa تحلیلی	بار اعمالی نہایی kpa	بار بحرانی از روش kpa DQM		
۳۰۰	۱۰۰	476	۵۰۰			
۴	۵۰	۴۸۶,۰۸	۵۰۰			
40.	۵	१९२९,• ९	490			
۴۸۰	١	49.,9	497			
421,1	٠,١	491,77	491,7			
49.	۰,۰۱	491,77	491,79			

simple support T=28

۴- مطالعات پارامتری جهت مشاهده بهتر اثر تغییر طول به شعاع نتایج در نمودار شکل (۶) این تغییرات ترسیم شده است. همانگونه که می دانیم بار کمانش بحرانی و کرنش متاثر از تغییرات در طول و شعاع می باشند. نشان داده شده است که با افزایش این نسبت نرخ کرنشهای کمانشی کاهش می یابد. نتایج بدست آمده در شکل (۶) نشان داده شده است. همانگونه که ملاحظه می گردد با افزایش نسبت طول به شعاع بار بحرانی(KN) کاهش می یابد.

جدول۲- بررسی همگرایی بار کمانش بحرانی استوانه جدار نازک از جنس آلیاژ هوشمند در دمای ۴۰ درجه سانتی گراد تکیه گاه ساده.

تکیه گاه ساده در دمای ۴۰ درجه سانتی گراد						
kpa بار اوليه	گام	بار بحرانی از روش kpa تحلیلی	بار اعمالی نھایی kpa	بار بحرانی از روش kpa DQM		
۳۰۰	١	۳۸۸,۳۴	۴			
۳۵۰	۵	۳۷۸,۸۷	۳۸۰			
۳۷۰	١	٣٧٧,٩۴	۳۷۸	1 4 0,7		
٣٧٧	٠,١	۳۷۷,۹	۳۷۷,۹			

شکل ۱۰ – نمودار مود کمانش استوانه جدار نازک در حالت تکیه گاه ساده بدست آمده از حل دقیق و DQM در دمای ۴۰ درجه.

شکل ۱۱- نمودار نسبت طول به شعاع با بار بحرانی.

t/R اثر نسبت

جهت مشاهده بهتر اثر تغییر ضخامت به شعاع نتایج در نمودار شکل (۷) این تغییرات ترسیم شده است. همانگونه که می دانیم بارکمانش بحرانی متاثر ازتغییرات درضخامت و شعاع می باشند. نشان داده شده است که با افزایش این نسبت نرخ کرنشهای کمانشی کاهش می یابد. نتایج بدست آمده در شکل (۷) نشان داده شده است. همانگونه که ملاحظه میگردد با افزایش نسبت ضخامت به شعاع باربحرانی(KN) افزایش می یابد.

۴–۲– اثر Cm

جهت مشاهده بهتر اثر ضریب Cm نتایج در نمودار شکل (۸) این تغییرات ترسیم شده است. این متغیر معرف یکی از خصوصیات مواد است که ارتباط میان دما و تنش بحرانی را نشان می دهد. نتایج بدست آمده در شکل (۸) نشان داده شده است. همانگونه که ملاحظه می گردد با افزایش این ضریب بار کمانش(KN) کاهش می یابد.

۲−۴– اثر مدول آستنيت Da

جهت مشاهده بهتر اثر مدول آستنیت Da نتایج در نمودار شکل (۹) این تغییرات ترسیم شده است. نتایج بر بدست آمده در شکل (۹) این تغییرات ترسیم شده است. نتایج بار کمانش(KN) افزایش می یابد.

P-۴- اثر مدول مار تنزیت Dm جهت مشاهده بهتر اثر مدول آستنیت Da نتایج در نمودار شکل (۱۰) این تغییرات ترسیم شده است.. نتایج بدست آمده در شکل (۱۰) نشان داده شده است. همانگونه که ملاحظه می گردد با افزایش این ضریب بار کمانش افزایش می یابد.

مراجع

- Ashiqur Rahman, M., and Chowdhuri, M.A.K., "Finite Difference Analysis of Short Sma Columns with Tension Compression Asymmetry", International Conference on Mechanical Engineering, Dhaka, Bangladesh, (2007).
- [2] Nemat-Nasser, S., Yong Choi, J., Isaacs, B., and Lischer, W., "Experimental Observation of High-rate Buckling of Thin Cylindrical Shape-memory Shells", SPIE, University of California, San Diego, Center of Excellence for Advanced Materials, Vol. 5761, pp. 192-200, (2005).
- [3] Fang, W., and Wickert, J. A., "Post Buckling of Micro Machined Beams", Department of Mechanical Engineering, Journal of Micromechanics and Microengineering, Camegie Mellon University, Vol. 4, pp. 116-123, August (1994).
- [4] Brinson, L.C., and Lammering, R., "Finite Element Analysis of the Behavior of Shape Memory Alloys and Their Applications", Int. J. Soli & Structures, North Western University Deutsche Forschgsanstalt Fur Luft and Raumfahrt, Institut Fur Aeroelastik, Bunsenstrabe 10, 3400 Gottingen, Germany, Vol. 30, No. 23, pp. 3261-3280, 17 may (1993).
- [5] Brinson, L.C., "One Dimensional Constitutive Behavior of Shape Memory Alloys", Journal of Intelligent Material and Structure, Vol. 4, pp. 3-6, April (1993).
- [6] Rahman, M.A., "Post Buckling Characteristic of the Short Super Elastic Shape Memory Alloy Columns Experimental and Quantitatives Analysis", International Journal of Applied Mechanics and Engineering, Department of Mechanical Engineering, Bangladesh University of Engineering & Technology, Vol. 11, No. 4, pp. 941-955, (2006).

[۷] علی اصغر جعفری و حسن غیاثوند، مدل یک بعدی رفتار فوق کشسان آلیاژهای حافظه دار دانشگاه خواجه نصیر الدین طوسی و دانشگاه امام حسین، اسفند (۱۳۸۵).

- [8] Loubna, H., and Essaaidi, M., "Thermo Mecanical Behavior of Polycristalline Shape Memory Alloys in Martensitic Transformation", European Journal of Scientific Research Vol. 23, No. 3, pp. 474-474, (2008).
- [9] Cui, J., Yong, S., and Olugbenga, O., "Thermoelastic Shape Memory Alloys with Extremely Small Hysteresis with Nature Materials", Vol. 5, pp. 286-290, November (2008).
- [10] Stoeckel, Yu., "Super Elastic Ni-Ti Wire", Wire Journal International, pp. 45-50, March (1991).
- [11] Wang, C. M., Tay, Z. Y., and Chowdhuary, A. N. R.," Examination of Cylindrical Shell Theories for Buckling of Carbon Nanotubes", International Journal of Structural Stability and Dynamics, Vol. 11, pp. 1035-1059, (2011).

فهرست نمادهای انگلیسی D: مدول یانگ E: مدول الاستیسیته T: دما

نمادهای یونانی ٤: کسر مارتنزیت ٤S: کسر مارتنزیت در اثر تنش ۲۵: کسر مارتنزیت در اثر حرارت θ: ضریب انتقال حرارت σ: تنش

γγ

Abstract

In recent years, Shape Memory Alloys have found a lot of interest among researchers and engineers. Material properties of SMA's change with temperature and stress. Also due to large strains that may occure in them, geometrical nonlinearities encountered in the analysis of SMA structures. These material and geometrical nonlinearities make difficulties in the analysis of SMA structures. In this thesis a numerical model based on the differential quadrature's method (DQM) is presented for the buckling analysis of circular cylindrical shells made of SMA material.