بررسی کیفی نرم افزار FLUKA در شبیه سازی و طراحی پرتوهای اشعه ایکس حاصل از لامپ اشعه ایکس

رضا طالعی"، مجید شهریاری'، سید محمود رضا آقامیری"

۱ - دانشجوی دکتری پر تو پزشکی، دانشکده مهندسی هسته ای، دانشگاه شهید بهشتی تهران
۲ - دانشیار گروه کاربرد پر توها، دانشکده مهندسی هسته ای، دانشگاه شهید بهشتی تهران
۳ - استادیار گروه پر تو پزشکی، دانشکده مهندسی هسته ای، دانشگاه شهید بهشتی تهران
۳ - استادیار گروه پر تو پزشکی، دانشکده مهندسی هسته ای، دانشگاه شهید بهشتی تهران
۳ - استادیار گروه پر تو پزشکی، دانشکده مهندسی هسته ای، دانشگاه شهید بهشتی تهران

چکیدہ

مقدمه: اشعه ایکس مهمترین و پرکاربردترین ابزار در پزشکی بالینی میباشد، که در دو مقوله تصویربرداری و رادیوتراپی مورد استفاده از قرار می گیرد. با توجه به مشکلات اندازه گیری طیف اشعه ایکس، تلاشهای زیادی در جهت تعیین طیف اشعه ایکس با استفاده از روشهای محاسباتی صورت گرفته است. کد FLUKA یکی از کدهای چند منظوره مونت کارلو می باشد که می تواند برای تولید طیف اشعه ایکس با استفاده از می محاسباتی صورت گرفته است. کد FLUKA یکی از کدهای چند منظوره مونت کارلو می باشد که می تواند برای تولید طیف اشعه ایکس با استفاده از می شد، که می مورت گرفته است. کد FLUKA یکی از کدهای چند منظوره مونت کارلو می باشد که می تواند برای تولید طیف اشعه ایکس بکار رود. در مقالات قبلی صحت نتایج کد MCNP با مقایسه با داده های تجربی به تایید رسیده. در این مقاله نتایج کد FLUKA مقایسه شده است.

مواد و روشها: جهت شبیه سازی طیف اشعه ایکس از کد MCNP و کد FLUKA2006 استفاده شده است. هندسه لامپ اشعه ایکس بطور دقیق در این دو نرم افزار شبیه سازی اعمال شده است. خروج الکترون از کاتد با زاویه مناسب برای نقط ه کانونی ۱/۲ میلی متر در نظر گرفته شده است. آند از جنس تنگستن بوده و زاویه آن ۱۲ درجه است. همچنین قطر فیلتر آلومینیوم ۱/۲ میلی متر در نظر گرفته شده است.

نتایج: نتایج حاصل از کدهای FLUKA و MCNP برای شار فوتونی در قبل و بعد از فیلتر محاسبه شده است. بـرای بررسـی اثـر فیلتر، طیفهای نرمالیزه شده به میانگین داده ها قبل و بعد از فیلتر بطور جداگانه در ۴ انرژی مختلف مقایسه شـده انـد. بـرای بررسـی کیفیت اثر فیلتر، طیف قبل به طیف بعد از فیلتر برای کدهای FLUKA و MCNP بطـور جداگانـه در انـرژی ۱۲۰ کیلـو الکتـرون ولت تقسیم شده و نتایج بدست آمده رسم شده است.

بحث و نتیجه گیری: پاسخ بدست آمده از کدهای FLUKA و MCNP در ناحیه تابش ترمزی انطباق بسیار خوبی دارند. ولی اختلاف در دامنه قله های ایکسهای مشخصه مشاهده می شود، از آنجایی که در بررسی کیفیت طیفهای اشعه ایکس و اثر فیلترهای مختلف روی آنها عمدتاً طیف حاصل از پدیده ترمزی مد نظر است، لذا هر دو کد FLUKA و MCNP برای شبیه سازی طیف اشعه ایکس مناسب می باشند. (مجله فیزیک پزشکی ایران، دوره ۳، شماره ۱۲، پاییز۸۵: ۳۶-۲۵)

واژگان كليدى: MCNP ،FLUKA، طيف اشعه ايكس، فيلتر آلومينيوم

^{*} نویسنده مسؤول: رضا طالعی

آدرس: گروه پرتوپزشکی، دانشکده مهندسی هسته ای، دانشگاه شهید بهشتی تهران R_Taleei@std.sbu.ac.ir تلفن: ۲۹۹۰۲۸۱۶ (۲۱) ۹۸+

رضا طالعي و همكاران

۱- مقدمه

اشعه ایکس مهمترین و پرکاربردترین ابـزار در پزشکی بـالینی میاشد،که در دو مقوله تصویربرداری و رادیوتراپی مورد استفاده قرار می گیرد. از جمله کاربردهای آن در تصویربرداری می توان به دستگاههای رادیولوژی، سی تی اسکن و ماموگرافی اشاره کرد. تولید اشعه ایکس بر اساس تابانـدن الکترونهـای پـر انرژی به هدفی با عدد اتمی بالا که بسته به نوع کاربرد از جنس تنگستن، موليبدن يا آلياژهاي آنها مي باشد صورت مي گيرد. طیف اشعه ایکس شامل پرتوهای ناشی از تابش ترمزی وهمچنین قله های ایکس مشخصه است که بر اثر پدیده های یونش و برانگیزش ایجاد می گردد. برای استفاده از پرتوهای ایکس لازم است که طیف انرژی آنها شناخته شده باشد. از آنجایی که اندازه گیری طیف اشعه ایکس مشکل بوده و نیاز به تجهیزات خاصبی دارد[۱، ۲، ۳، ۶ و٥]. تلاشهای زیادی در جهت رسم طیف اشعه ایکس با استفاده از روشـهای محاسـباتی صورت گرفته است. این تلاشها از سال ۱۹۲۳ آغاز شـد[٦]. بـا پیشرفت سخت افزارها و توسعه روشهای کامییوتری کارهای جدیدتری برای تولید طیفهای دقیق تر صورت گرفت [۷ و ۸]. بطور کلی روشهای محاسباتی را می توان به سه دسته روشـهای تجربی[۲ و ۹]، روشهای نیمه تجربی[۱۰ و ۱۱] و شبیه سازیهای مونت کارلو [۸، ۱۲، ۱۳، ۱٤ و ۱۵] تقسیم کرد. با وجود اینکه روشهای تجربی و نیمه تجربی سریعترین روشهای مدل سازی می باشند ولی مدل های پیشنهاد شده محدود بوده و توانایی کاربری در محدوده وسیعی از کاربردها را ندارنـد. بـه علاوه مدلهای ارائه شده ترکیب هدف و فیلتر ثابتی دارند و اجازه بکارگیری ترکیبات جدید در طراحی هدف و فیلتر و بررسی اثر آن روی کیفیت طیف ایکس خروجی را نمی دهند. ولی شبیه سازی مونت کارلو این محدودیتها را ندارد و تنها

عیب آن زمان بر بودن این روش نسبت به مدله ای تجربی و نیمه تجربی می باشد. کدهای کامپیوتری مختلفی جهت تولید اشعه ایکس مورد استفاده قرار گرفته اند. بعضی از این کدها خاص تولید طیف اشعه ایکس بوده [۱۲ و ۱۲] و برخی دیگر کدهای با قابلیتهای گسترده ای هستند که توانایی تولید طیف پرتوهای ایکس را نیز دارا می باشند. MCNP، EGS4 و ITS از جمله مهمترین کدهای بکار رفته برای تولید طیف اشعه ایکس می باشند که در سالهای اخیر مقالات متعددی در این زمینه ارائه شده است [۷، ۱۳، ۱۶ و ۱۵].

یکی دیگر از کدهای چند منظوره برای محاسبات هسته ای کد FLUKA است که توانایی شبیه سازی مسائل مربوط به ذرات و پرتوهای مختلف را دارد. در کارهای قبلی توانایی کد MCNP جهت تولید طیف اشعه ایکس بررسی شده و نتایج بدست آمده با مقادیر تجربی مورد تائید قرار گرفته است[۷]. در این مقاله طیف اشعه ایکس در محدوده انرژیهای بین ۸۰ تا ۱٤۰ الکترون ولت توسط کدهای MCNP و FLUKA تولید شده و اثر فیلتر آلومینیوم بر طیف خروجی مورد بررسی قرار گرفته است.

۲- مواد و روشها ۲-۱ ویژگیهای FLUKA و MCNP

FLUKA یک کد چند منظوره برای محاسبه ترابرد ذرات و محاسبه اندرکنش آنها با مواد است که می تواند در مسائل مختلف مربوط به رادیولوژی، رادیو تراپی و پزشکی هسته ای مورد استفاده قرار گیرد. همچنین می توان از این کد برای شبیه سازی حفاظ های مختلف، شتابدهنده های الکترون و پروتون، طراحی هدف ، کالریمتری، محاسبه اکتیویته، دوزیمتری، طراحی

شبیه ساز ی و طراحی پر توهای اشعه ایکس با FLUKA

درطی حرکت الکترون صرفنظر شده و تولید آن در انتهای هر مسیر در نظر گرفته می شود. در روشهای جدید ترابرد الکترون علاوه بر در نظر گرفتن تولید فوتونهای تابش ترمزی تلاش شده که مسیر حرکت الکترونها به گونه ای تقسیم بندی شود که تا حد ممکن کوچک باشد که علاوه برصادق بودن تئوری چند برخوردی دقت ترابرد الکترونها نیز افزایش یابد.

۲-۲ شبیه سازی طیف اشعه ایکس به کمک کدهای FLUKA و MCNP

جهت شبیه سازی طیف اشعه ایکس از کد MCNP در حالت E،P استفاده شده و تغییری در کارتهای PHYS:E و PHYS:P انجام نشده است. برای محاسبه طیف در قبل و بعد از فیلتر از خروجی F4 استفاده شده است. این خروجی شار را با استفاده از تخمین طول مسیر محاسبه می کند.

FLUKA2006 از کد استفاده از کد FLUKA2006 استفاده از کارت شبیه سازی شده که برای بالا بردن دقت مساله از کارت DEFAULTS در مود PRECISIO استفاده شده است. کارت DEFAULTS برای تبدیل مساله از حالت چند پراکندگی به حالت تک پراکندگی و همچنین کارتهای پراکندگی به حالت تک پراکندگی و همچنین کارتهای مورد نیاز تولید فوتون و فعال کردن فوتونهای فلوئورسانسی مورد استفاده قرار گرفته اند. از کارت USRTRACK برای محاسبه شار فوتون در قبل و بعد از فیلتر استفاده شده است. شار فوتون در قبل و بعد از فیلتر استفاده شده است. پراکندی PLUKA ای محاسبه شار فوتون در قبل و بعد از فیلتر استفاده شده است. شار فوتون در قبل و بعد از فیلتر استفاده شده است. شار فوتون در قبل و بعد از فیلتر استفاده شده است. آند از جنس تنگستن بوده و زاویه آن ۱۲ درجه است. همچنین قطر فیلتر آلومینیوم ۱/۱ میلی متر در نظر گرفته شده است. (شکل ۱)

آشکارساز، تابشهای کیهانی و فیزیک نوترینواستفاده کرد. کـد FLUKA توانائی شبیه سازی ٦٠ نوع ذره با دقـت بـالا را دارد که شامل فوتون و الکترون (در دامنه ۱ کیلو الکترون ولت تا هزاران ترا الكترون ولت) نوترينو و موئون در هر دامنه انـرژى، هادرونها تا انرژی ۲۰ ترا الکترون ولت و همچنین آنتی ذرات مربوطه ، نوترونها و یونهای سنگین مـی باشـد [۱۷ و ۱۸]. ایـن برنامه قابلیت ترابرد فوتونهای پلاریزه شده (نظیر تابش سینکرترون) و فوتونهای نوری را دارد. تحولات زمانی و دنبال کردن تابش هسته های نایایدار یس ماند نیز توسط FLUKA انجام می شود. کد FLUKA از الگوریتم بدیعی برای ترابرد ذرات بـاردار اسـتفاده مـي كنـد. ايـن الگـوريتم شـامل بررسـي پراکندگی کولمب می باشد که جابجائی عرضی دقیقی حتی در مرزها را انجام می دهد. سطـــح مقاطــع تفاضلــــی تــابش ترمزی و توزیــع زاویــه ای فوتونهــای تابش ترمزی بطـور دقیق اعمال می شود. در ناحیه ملایم تابش ترمزی اثرات فرونشانی و پلاریزاسیون در نظر گرفته می شود. درحال حاضر محدوديت انرژي پائين براي الكترونها ١ كيلو الكترون ولت مي باشد. اگر چه در مواد با عدد اتمی بالا مدل چند پراکندگی برای انرژیهای ۲۰-۳۰ کیلو الکترون ولت بی اعتبار می شود، و باید از مدل تک پراکندگی برای این دامنه انرژی استفاده نمود.حداقل انرژی پیشنهادی برای انرژی اولیه الکترون برای موادی با عـدد اتمی کم بین ٥٠-١٠٠ کیلو الکترون ولت می باشد و برای مواد با عدد اتمي بالا بين ١٠٠-٢٠٠ كيلو الكترون ولت ييشنهاد می شود مگراینکه از مدل تک پراکندگی استفاده شود که زمان اجرای برنامه را بالا می برد. بر خلاف کد FLUKA که قابلیت انجام ترابرد الکترون به دو روش چند پراکندگی و تک یراکندگی دارد کد MCNP تنها از روش چند پراکندگی استفاده می کند. در این روش از گسیل فوتونهای تـابش ترمـزی

شکل ۲: طیف اشعه ایکس در ٤ انرژی قبل از فیلتر آلومینیومی به کمک کد FLUKA

شبیه ساز ی و طراحی پر توهای اشعه ایکس با FLUKA

شکل ٤: طیف اشعه ایکس در ٤ انرژی قبل از فیلتر آلومینیومی به کمک کد MCNP

شکل ۱: طیف اشعه ایکس قبل و بعد از فیلتر آلومینیومی در انرژی ۱٤۰ کیلو لکترون ولت به کمک کدهای FLUKA و MCNP

شبیه ساز ی و طراحی پرتوهای اشعه ایکس با FLUKA

شکل ۷: طیف اشعه ایکس قبل و بعد از فیلتر آلومینیومی در انرژی ۱۲۰ کیلو لکترون ولت به کمک کدهای FLUKA و MCNP

شکل ۸ طیف اشعه ایکس قبل و بعد از فیلتر آلومینیومی در انرژی ۱۰۰ کیلو لکترون ولت به کمک کدهای FLUKA و MCNP

شکل ۱۰: منحنی حاصل از تقسیم طیف قبل به طیف بعد از فیلتر آلومینیومی برای کد FLUKA در انرژی ۱۲۰ کیلو لکترون ولت

شکل ۱۲: طیف اشعه ایکس قبل از فیلتر آلومینیومی در انرژی ۱۲۰ کیلو لکترون ولت به کمک کدهای FLUKA و MCNP

شکل ۱۳ طیف اشعه ایکس بعد از فیلتر آلومینیومی در انرژی ۱۲۰ کیلو لکترون ولت به کمک کدهای FLUKA و MCNP

٤- بحث

با توجه به نتایج بدست آمده هر دو کد قله های ایکس مشخصه و طیف انرژی پرتوهای تابش ترمزی را بخوبی نشان می دهند با کاهش اختلاف پتانسیل از ۱٤۰ تا ۸۰ کیلو الکترون ولت دامنه قله های ایکس مشخصه به ویژه در محدوده های ۵۰ تا ۸۰ کیلو الکترون ولت به تدریج کاهش می یابد بطوریکه در اختلاف پتانسیل ۸۰ کیلو الکترون ولت دامنه آنها بسیار کوچک می شود. این در حالی است که تضعیف قله های نزدیک به ۱۰ انرژی لازم برای تولید این قله های ایکس مشخصه است، بطوریکه الکترونهای ۸۰ کیلو الکترون ولت انرژی لازم برای تولید ایکسهای مشخصه لایه های بیرونی، نزدیک به ۱۰ کیلو الکترون ولت را دارند در حالیکه احتمال تولید ایکس

مشخصه در لایه k، نزدیک ۲۰ کیلو الکترون ولت، در مقایسه با انرژی های بالاتر بـه مراتـب کمتـر مـی شـود. ایـن رفتـار در شکلهای ۲ تا ۵ بخوبی دیده می شود.

علی رغم رفت ار مشابه نتایج کدهای MCNP و FLUKA و FLUKA و FLUKA و FLUKA و FLUKA در محدوده تابش ترمزی، دامنه فوتونهای ایکس مشخصه که توسط این دو کد محاسبه شده است تفاوت قابل توجهی دارند. شکل ۱۲ این موضوع را به وضوح نشان می دهد. با اینکه دامنه طیف در ناحیه تابش ترمزی منطبق بر هم است ولی قله های ایکس مشخصه که ایک MCNP دود PLUKA می باشند. با توجه به کارهای قبلی مقادیر حاصل از شبیه سازی که MCNP در کارهای قبلی مقادیر آزمایشگاهی بود[۷ و ۱۳]. بنابر این می توان

شبیه ساز ی و طراحی پر توهای اشعه ایکس با FLUKA

٥- نتيجه گيري

از آنجاکه اندازه گیری طیف اشعه ایکس قبل از فیلتر ممکن نمی باشد شبیه سازی مونت کارلو مناسب ترین روش برای این منظور می باشد و مقایسه کمی طیفهای قبل و بعد از فیلتر امکان طراحی لامپ اشعه ایکس را فراهم می کند. علی رغم اختلافات موجود بین دو کد FLUKA و MCNP در شبیه سازی طیف اشعه ایکس که بیشتر در قله های ایکسهای مشخصه مشاهده می شود، و از آنجایی که در بررسی کیفیت طیفهای اشعه ایکس و اثر فیلترهای مختلف روی آنها عمدتاً طیف حاصل از پدیده ترمزی مد نظر است لذا می توان گفت، هر دو ایکس مناسب می باشند. گفت که کد FLUKA نیز تقریباً همان مقدار خطا را با تقریب نقصانی محاسبه می کند.

نکته حائز اهمیت دیگر اثر فیلتر بر طیف پرتوهای ایکس است. این اثر در شکلهای ٦ تا ۹ دیده می شود. برای بررسی اثر فیلتر انـرژی ١٢٠ کیلـو الکتـرون ولـت انتخـاب شـده است. فیلتـر آلومینیومی طیف انرژی ناحیه پائین تر از ١٢ کیلو الکترون ولـت را برای کدهای FLUKA و MCNP به ترتیب حـدود ٩٠ و ۳۷ برابر و طیف انرژی ناحیه بالاتر از ٢٤ کیلو الکترون ولـت را برای کـدهای FLUKA و MCNP به ترتیب حـدود ٢٠ و برای کـدهای FLUKA و MCNP به ترتیب حـدود ٢٠ و برای کـدهای می کند. نکته جالب ثابت بودن میزان تضعیف انرژیهای بالاتر از ٢٤ کیلو الکترون ولت است که در شکلهای ۱۰ و ١١ دیده می شود. بنابراین نقش مهم فیلتر آلومینیوم مبنی بر حذف ناحیه کم انرژی و تخت کردن طیف اشـعه ایکـس با

منابع

- 1. Fewell T R and Shuping R E. Photon energy distribution of some typical diagnostic x-ray beams Med Phys 1977; 4:187–97.
- 2. Fewell T R, Shuping R E and Healy K E. Handbook of Computed Tomography X-Ray Spectra HHS publication (FDA) 81-8162 (Washington, DC: US Govt. Printing Office) 1981.
- 3. Antonuk L E, el-Mohri Y, Siewerdsen J H, Yorkston J, Huang W, scarpine V E and Street R A. Empirical investigation of the signal performance of a high-resolution, indirect detection, active matrix flat-panel imager (AMFPI) for fluoroscopic and radiographic operation Med Phys 1997; 24: 51–70.
- 4. Dance D et al. Influence of anode/filter material and tube potential on contrast, signal-to-noise ratio and average absorbed dose in mammography: a Monte Carlo study Br J Radiol 2000; 73:1056–67.
- 5. Wilkinson L E, Johnston P N and Heggie J C. A comparison of mammography spectral measurements with spectra produced using several different mathematical models Phys Med Biol 2001; 46: 1575–89.
- 6. Kramers H A. On the theory of x-ray absorption and of the continuous x-ray spectrum Phil Mag 1923; 46: 836–71.

- 7. Ay M R, Shahriari M, Sarkar S, Adib M and Zaidi H. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNPM Phys Med Biol 2004; 49: 4897-4917.
- 8. Ben Omrane L, Verhaegen F, Chahed N andMtimet S. An investigation of entrance surface dose calculations for diagnostic radiology using Monte Carlo simulations and radiotherapy dosimetry formalisms Phys Med Biol 2003; 48: 1809–24.
- 9. Boone J M and Seibert J A. An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV Med Phys 1997; 24: 1661–70.
- 10. Birch R and Marshall M. Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector Phys Med Biol 1979; 24: 505–17.
- 11. Tucker DM, Barnes G T and Chakraborty D P Semiempirical model for generating tungsten target x-ray spectra Med Phys 1991;18: 211–8.
- 12. Kulkarni R N and Supe S J. Monte Carlo calculations of mammographic x-ray spectra Phys Med Biol 1984; 29: 185–90.
- 13. Verhaegen F, Nahum A E, Van de Putte S and Namito Y. Monte Carlo modelling of radiotherapy kV x-ray units Phys Med Biol 1999; 44: 1767–89.
- 14. Ng K P, Kwok C S and Tang F H. Monte Carlo simulation of x-ray spectra in mammography Phys Med Biol 2000; 45: 1309–18.
- 15. Bhat M, Pattison J, Bibbo G and Caon M. Off-axis x-ray spectra: a comparison of Monte Carlo simulated and computed x-ray spectra with measured spectra Med Phys 1999; 26: 303–9.
- O'Meara J M, Chettle D R, McNeill F E, Prestwich W V and Svensson C E. Monte Carlo simulation of source-excited in vivo x-ray fluorescence measurements of heavy metals Phys Med Biol 1998; 43: 1413–28.
- 17. Fasso, A. Ferrari, J. Ranft, and P.R. Sala, FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773.
- Fasso, A. Ferri, S. Roesler, P.R. Sala, G. Battistoni, F. Cerutti, E. Gadioli, M.V. Garzelli, F. Ballarini, A. Ottolenghi, A. Empl and J. Ranft, The physics models of FLUKA: status and recent developments, Computing in High Energy and Nuclear Physics 2003 Conference (CHEP2003), La Jolla, CA, USA, March 24-28, 2003, (paper MOMT005), eConf C0303241 (2003).