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ABSTRACT 
Traditional robot manipulators that have large links need powerful actuators and their massive structures 
strongly limit their operating speed. Flexible manipulators having lightweight links are designed to 
overcome these disadvantages and in this case their flexibility is an important and unavoidable 
characteristic. In this paper, a new approach to finite element modeling of flexible manipulators, using 
Hamiltonian mechanics and simulation of their dynamic behavior is presented. The finite element model 
includes all non-linear terms, such as dynamic interactions between linkages. A computer program is 
developed in the MATLAB medium to simulate the effects of flexibility on the robot’s motion quality. Our 
results indicate the importance of flexibility and existence of considerable errors in the end-effector's 
positions. 
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  چكيده
از طرفي، بزرگي سازة بازوها سرعت حركت .  نياز به عملگرهاي قدرتمند دارند خودزرگ براي حركت بازوهاي سنگينهاي بروبات
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1. Introduction 
With the growing need for advanced robot 
manipulators, the requirement for higher speed, 
higher efficiency, smaller actuators or motors, and 
greater maneuverability robots are more in demand. 
Therefore, more powerful analytical and numerical 
models are required. Mass and inertia Reduction of 
different components and linkages of a robot usually 
result in a higher speed, lower energy consumption 
and easier system fabrication. Reduction of inertia of 
linkages is also especially important in the design of 
robot control policies. This many criteria must be 
considered. For instant, using thin member linkages is 
especially helpful. In this case, flexibility of the 
members becomes important and a new branch of 
robotics under the title of “flexible manipulators” is 
evolved. However, the disadvantages of flexible 
manipulators are undesirable dynamic behavior and 
the difficulty for their identification and prediction. In 
fact, when a mechanical manipulator with thin 
linkages moves at a high speed, including the 
flexibility and motion due to elasticity of members in 
the dynamic model is necessary. This makes the 
dynamic model more complex than the case of rigid 
assumed linics. Although including flexibility makes 
the control system design more complex, its usage is 
growing because of the earlier mentioned this, 
advantages.  

Research into the area of flexible manipulators 
has been considered by many researchers in the past 
two decades. Regarding this, Book [1] has introduced 
homogenous transformation matrices for describing 
the motion of revolute and prismatic joints and 
deformation due to flexibility of the links. In this 
work, links deformation is assumed as the sum of the 
modal vectors obtained from the governing equation 
using the Lagrangian method. Usoro etal [2] divided 
each mechanical linkage with flexible and light 
members into discrete finite elements. The governing 
equations were then deduced using the potential and 
the kinetic energy. They extended their work to 
manipulators with two members. Low and 
Vidyasygar [3] introduced a procedure for obtaining 
the dynamic equations for manipulators with rigid 
and flexible members using the Hamiltonian 
principle. Wen [4] simulated the deformation by 
considering hypothetical modes for the members. He 
assumed that a flexible member behaves like the 
Euler-Bernoulli beam. In this manner, the equations 
of the system were determined using the Langrargian 
method. Zhang and Yu [5] developed the dynamic 
equations by considering the effects of flexibility in 
the members and joints. Their technique was applied 

to a four-member manipulator, and the results 
clarified the importance of the joints and members 
flexibility. Plosa and Wojciech [6] developed a 
mathematical model for a three-dimensional beam 
with variable stiffness under torsion and bending. The 
equations of the system were obtained using the finite 
element method. Biswas and Klafer [7] considered a 
one-dimensional manipulator and used a servomotor 
for actuation of the member. And assuming this the 
governing equations were derived. Pfeiffer and 
Gebler [8] described the dynamics and control of 
flexible manipulators using their end-effector 
flexibility in a given path and derived the governing 
equation using this technique. Everett [9] derived the 
equations of motion for a flexible manipulator using 
the energy method and state space vectors. Readman 
and Belanger [10] modeled their flexible links as a 
helical linear spring. They obtained the dynamic 
equations for flexible by this assumption. 

In this paper a new approach to finite element 
modeling for two degrees of freedom of flexible 
manipulators is presented. In this modeling, all the 
nonlinear terms such as dynamic interactions between 
linkages are considered in simulating their dynamic 
behavior. In this manner, the deduced dynamic 
equations and the dynamic behavior of flexible 
manipulators are more realistic than the previous 
studies. 
   
2. Formulation of the Problem 
In this section, the dynamic model of the two degrees 
of a freedom of flexible manipulator is derived. Each 
member is divided to several elements and for each 
one, kinetic and potential energies are considered 
using the Euler - Bernoulli beam theory. The 
manipulator is shown in figure 1. In this research, the 
joints are assumed rigid and members are considered 
flexible. Each member length is bounded and the 
Euler- Bernoulli beam theory is used. The mechanical 
linkage moves in a horizontal plane. The system 
parameters are defined as follows: 

ev1 : Displacement in the first node, 
ev1 : Displacement in the second node, 
e
1ϕ : Rotation in the first node, 
e
2ϕ : Rotation in the second nodem, 

)(xμ : Mass per unit length, 
L : Length of link, 

el : Length of element, 
EI : Flexural rigidity, 

e
1τ : Actuating torque at first joint, 
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. 

. 

e
2τ : Actuating torque at second joint, 
θ : Joint variables, 
r : Position vector in local coordinate system, and 
R : Position vector in global coordinate system. 
 
 

 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 Kinetic Energy 
To derive the kinetic energy expression for an 
element of the first link, the displacement and angular  
 
Velocity vectors can be expressed in the link 
coordinate system as: 
 

jir vx +=1 , (1) 
kω )'( 11

&& vθ += . (2) 
 
The absolute position and velocity of the particle in 
the first link coordinate system is represented by the 
following equations:    
 

jiR vx +=1 , (3) 
)(θ11 jikjR vxv +×+= &&&

. (4) 
 
To calculate the first link's total kinetic energy, the 
definition of kinetic energy can be used by integrating 
along the element length as: 
  

dxT
el

e
11 2

1 RR 1
&&∫ ⋅= μ

 (5) 

 
Substituting equation (4) into equation (5), we obtain: 
 

dxθxvθxvθvT
el

e )2(
2
1

1
2

1
222

1
2

1
&&&&&∫ +++= μ

 (6) 
 
Equation (6) gives the total kinetic energy of the first 
link. According to Fig. 1, the displacement and 
angular velocity vectors for an element of the second 
link can be expressed by:  
 

jir vx +=2 , (7) 
kω )'vθ( 2

&& +=2 . (8) 
 
The absolute position and velocity of a particle of the 
second link in its coordinate system can be written by 
the following equations: 
 

222 rRR += o , (9) 
222 rRR &&& += o , (10) 

22 rjiR && ++= oyox VV , (11) 
jiR )θ()θ( 222 vxVvV oyox &&&& +++−= . (12) 

 
2oR  is the position vector of the second joint, which 

is located at the beginning of the second link. oxV  and 

oyV  are the components of the absolute linear velocity 
at the beginning point of the second link in the local 
coordinate system. The kinetic energy for an element 
of this link is defined as: 
 

dxT
el

e
222 2

1 RR &&∫ ⋅= μ . (13) 

 
Now, by substituting equation (12) into equation (13),  

.)θ2

2θ2θ

θ2θ(
2
1

2

2
22

2
22

2
2

2
22

2

dxvx

vVxVvxV

vVvVT

oyoyoy

l oxox
e

e

&&

&&&&

&&

+++++

+−+= ∫ μ

 (14) 

 
Equation (14) gives the total kinetic energy of the 
second link. 
 
2.2 Potential Energy 
It is assumed that bending is the only source of 
potential energy in the first and second linkages. The 

 
                                                      x  
   
   

                                           2v      
   

                                            1v   
                                                 
                            

                                       2r        2θ  
                   2R  
    Y                          y                 
                                                   1ϕ  
   

                                              2v  
 y                 1R                                       x  

1θ  

 

                                               X     
 
Figure.1: Two degrees of freedom flexible manipulator 

and parameters 
Fig. (1): Two degrees of freedom flexible 
manipulator and parameters. 
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euler-Bernoulli beam theory is applied to calculate 
the potential energy resulting: 
 

dx
x

vEIU el∫ ∂
∂

= )(
2
1

2

2

1 , (15) 

dx
x

vEI(U el∫ ∂
∂

= )
2
1

2

2

2 . (16) 

 
2.3 Finite Element Modeling 
There are several methods for modeling the system. 
These methods include the assumed mode method, 
lumped method, and the finite element method. 
Among these the finite element method is the most 
accurate and popular one, thus, this method has been 
selected for describing the movement of the flexible 
members. In this method, the deformations are 
usually written as following:  
 

)}()]{([),( txtxv qN= , (17) 
 
where, )]([ xN is the row matrix of the shape 
functions and )}({ tq is the nodal variable vector. 
Substituting ),( txv into the kinetic energy formula, 
and evaluating the integral, the kinetic energy for the 
elements of the first and the second linkages can be 
obtained as:  
 

1
2

11
2

111 θθ
2
1

2
1θ

2
1 &&&&&& TTTT IT aqqMqqMq +++= , (18) 

),θ2θ2

2θ

θ2θ(
2
1

223

2
2

21
2

4

22
2

21
2

42

&&&

&&&&

&&

TT
oy

TT
oy

T
oy

TT
ox

T
ox

MV

VIVM

VVMT

aq

MqqMq

MqqMq

+

+++++

−+=

 (19) 

 
in which, 1M , 2M , 3M , 4M , I  and a are defined as: 
 

ηηηημ dJT ))().()((1
11 NNM −∫= ,  

ηηημ dJT )()(1
12 NM −∫= , 

ηηημ dJliM e ))12(
2
1)((1

13 +−∫= − , (20) 

ηημ dJM )(1
14 −∫= , 

ηηημ JdliI e 21
1 ))12(

2
1)(( +−∫= − . 

ηηηημ dJli e )())12(
2
1)((1

1 Na +−∫= − . 

 

The potential energy of the first and second links can 
be calculated using the same procedure as:  
 

qKq 11 2
1 TU = , (21) 

qKq 22 2
1 TU = , (22) 

 
where, 1K  and 2K  are defined as: 
 

ηηηη dJEI 31
1 )()()( −
− ′′′′∫= NNK . (23) 

 
To derive the governing equations, Hamiltonian 
principle, which is defined by the following formula, 
is used:  
 

,0)(2

1

=−∫
t

t
dtUTδ  (24) 

                                               
where, T  and U  are the kinetic and potential 
energies, respectively. Now, substituting equations 
(20) and (22) into equation (24), the governing 
equations are obtained in the form: 
 

,θθ2θ

,]θ[θ

2111111111111111

111
2

111111111

eTT

eT

FI =+++

=−++
&&&&&&&&

&&&&&

qMqqMqqa

FqMKaqM
 (25) 

.θ

θθ

θ2

θθ

12222

222
2

2122221222

222222212232

222222212222

e
ox

oy
T

e
ox

TT
oy

ox
TT

V

V

FVMV

VI

FM

MqMqKqMa

MqqMq

MqqaqMq

=+

+−++

=−+

+−++

&

&&&&&&

&&&&

&&&&&&&

 (26) 

 
Assembling the mass and the stiffness matrices, the 
dynamic equations of the manipulator will have the 
following forms: 

∗∗∗ =
⎭
⎬
⎫

⎩
⎨
⎧

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

1
1

1
1

1

1
1

θθ F
q

K
q

M
&&

&&
. (27) 

∗∗∗∗ =+
⎭
⎬
⎫

⎩
⎨
⎧

+
⎭
⎬
⎫

⎩
⎨
⎧

22
2

2
2

2

2
2

θθ
FC

q
K

q
M

&&

&&
. 

 
It should be noted that q is the nodal displacement 
and the other parameters are defined as:  
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}.{ 2
2

2
2

1
2

1
2 Kϕϕ vvq =  

 
3. Numerical Solution and Simulation Results 
In this section, the numerical solutions and the 
simulation results of a flexible manipulator is 
presented. A computer program was developed for 
solving the system of equations using the finite 
difference method. Table 1 indicates the parameters 
used in the numerical solution. The computer code 
was executed with quadratic torques applied at joints 
1 and 2. The profiles of the quadratic torque used in 
this simulation are shown in Fig’s 2-3. Under this 
condition, variation of the joint angles and the 
angular velocity of the two links are considered. 
Figures 4 and 5 show the first and second joint angle 
variations with respect to time. Fig’s 6-7 show the 
displacement of two points located at the end of the 
two links. The rotation of the tangent line at end 
points is shown in Fig’s 8-9. Fig’s 10- 15 show the 
rate of the mentioned quantities. These are the 
angular velocities of the first and second links, the 
linear velocity of the ends of two links, and their 
angular velocity of the tangent line at the end, 
respectively. 
 

Table (1): Problem parameters.  
EI 

(N.m2) 
μ  

(kg/m) 
L 

(m) 
200 1 1 
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Fig. (2): Actuating torque applied to joint one. 
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Fig. (3): Actuating torque applied to joint two. 
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Fig. (4): Joint angle versus time at first joint. 
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Fig. (5): Joint angle variations versus time at second joint. 
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Fig. (6): End point displacement of the first link. 
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Fig. (7): End point displacement of the second link. 
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Fig. (8): Rotation of tangent line at the end point of first link. 
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Fig. (9): Rotation of tangent line at the end point of second link. 
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Fig. (10): Angular velocity of the  first link. 
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Fig. (11): Angular velocity of the  second link. 
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Fig.(12): Linear  velocity of the end point of  first link. 
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Fig. (13): Linear  velocity of the end point of  second link. 
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Fig. (14): Angular  velocity at the end of  first link. 
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Fig. (15): Angular  velocity at the end of  second link. 

 

4. Conclusions 
In this paper, a new procedure is described for 
nonlinear finite element modeling of flexible 
manipulator by which the dynamic equations are 
deduced. The procedure for modeling a flexible 
manipulator uses the kinetic and potential energies 
and the Hamilton principle to derive the dynamic 
equations. The square torque is then applied to the 
joints of the flexible manipulator to simulate of their 
dynamic behavior. for a two degrees of freedom 
manipulator, there is no fluctuation in the angle of the 
first member, however, the variation of the angle for 
the second member is considerate. Thus, the flexible 
manipulator doesn’t perform its task accurately. The 
deviation of the second member is more than the first 
one. Thus, the error for the exact determination of the 
end–effector position is important. The reason of the 
higher vibration in the second link is its connection to 
the end of the first one and also its superimposed 
vibration. 
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