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A New Approach to Finite Element Modeling and
Simulation of Flexible Robot Manipulators
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ABSTRACT

Traditional robot manipulators that have large links need powerful actuators and their massive structures
strongly limit their operating speed. Flexible manipulators having lightweight links are designed to
overcome these disadvantages and in this case their flexibility is anwimportant and unavoidable
characteristic. In this paper, a hew approach to finite element modeling of flexible manipulators, using
Hamiltonian mechanics and simulation of their dynamic behavior is presented. The finite element model
includes al non-linear terms, such as dynamic interactions between linkages./A computer program is
developed in the MATLAB medium to simulate the effects of flexibility on therobot’s motion quality. Our
results indicate the importance of flexibility and existence of considerable errors in the end-effector's
positions.
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1. Introduction

With the growing need for advanced robot
manipulators, the requirement for higher speed,
higher efficiency, smaller actuators or motors, and
greater maneuverability robots are more in demand.
Therefore, more powerful analytical and numerical
models are required. Mass and inertia Reduction of
different components and linkages of a robot usually
result in a higher speed, lower energy consumption
and easier system fabrication. Reduction of inertia of
linkages is also especially important in the design of
robot control policies. This many criteria must be
considered. For instant, using thin member linkages is
especially helpful. In this case, flexibility of the
members becomes important and a new branch of
robotics under the title of “flexible manipulators” is
evolved. However, the disadvantages of flexible
manipulators are undesirable dynamic behavior and
the difficulty for their identification and prediction. In
fact, when a mechanical manipulator with thin
linkages moves at a high speed, including the
flexibility and motion due to elasticity of members in
the dynamic model is necessary. This makes the
dynamic model more complex than the case of rigid
assumed linics. Although including flexibility makes
the control system design more complex, its usage is
growing because of the earlier mentioned / this,
advantages.

Research into the area of flexible manipulators
has been considered by many researchers in.the past
two decades. Regarding this, Book [1] has introduced
homogenous transformation matrices. for describing
the motion of revolute and prismatic. joints and
deformation due to flexibility .of the links. In this
work, links deformation is assumed as the sum of the
modal vectors obtained from the governing equation
using the Lagrangian method. Usoro etal [2] divided
each mechanical linkage with flexible and light
members into discrete finite elements. The governing
equations were then deduced using the potential and
the kinetic energy. They extended their work to
manipulators  with  two members. Low and
Vidyasygar [3] introduced a procedure for obtaining
the dynamic equations for manipulators with rigid
and flexible members using the Hamiltonian
principle. Wen [4] simulated the deformation by
considering hypothetical modes for the members. He
assumed that a flexible member behaves like the
Euler-Bernoulli beam. In this manner, the equations
of the system were determined using the Langrargian
method. Zhang and Yu [5] developed the dynamic
equations by considering the effects of flexibility in
the members and joints. Their technique was applied

to a four-member manipulator, and the results
clarified the importance of the joints and members
flexibility. Plosa and Wojciech [6] developed a
mathematical model for a three-dimensional beam
with variable stiffness under torsion and bending. The
equations of the system were obtained using the finite
element method. Biswas and Klafer [7] considered a
one-dimensional manipulator and used a servomotor
for actuation of the member. And assuming this the
governing equations were derived. Pfeiffer and
Gebler [8] described the dynamics and control of
flexible manipulators wusing their end-effector
flexibility in a given path and derived the governing
equation using this technique. Everett [9] derived the
equations of motion for a flexible manipulator using
the energy method and state space vectors. Readman
and Belanger [10] modeled their flexible links as a
helical linear spring. They obtained the dynamic
equations for flexible by this assumption.

In this paper a new approach to finite element
modeling for two degrees of freedom of flexible
manipulators is presented. In this modeling, all the
nonlinear terms such as dynamic interactions between
linkages are considered in simulating their dynamic
behavior. In this manner, the deduced dynamic
equations and the dynamic behavior of flexible
manipulators are more realistic than the previous
studies.

2. Formulation of the Problem

In this section, the dynamic model of the two degrees
of a freedom of flexible manipulator is derived. Each
member is divided to several elements and for each
one, kinetic and potential energies are considered
using the Euler - Bernoulli beam theory. The
manipulator is shown in figure 1. In this research, the
joints are assumed rigid and members are considered
flexible. Each member length is bounded and the
Euler- Bernoulli beam theory is used. The mechanical
linkage moves in a horizontal plane. The system
parameters are defined as follows:

e

Vi Displacement in the first node,

I : Displacement in the second node,
o/ : Rotation in the first node,

@5 : Rotation in the second nodem,
H(x) : Mass per unit length,
L : Length of link,

[°: Length of element,
EI : Flexural rigidity,

7) : Actuating torque at first joint,
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75 : Actuating torque at second joint,

0 : Joint variables,
I' : Position vector in local coordinate system, and
R : Position vector in global coordinate system.
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Fig. (1): Two degrees of freedom flexible
manipulator and parameters.

Velocity vectors can be expressed .in the link
coordinate system as:
r = xi+ Vj (1)

The absolute position and.velocity of the particle in
the first link coordinate system is represented by the
following equations:

Rl =xi+ Vj (3)
R, =vj+0,kx(xi+vj) @)
To calculate the first link's total kinetic energy, the

definition of kinetic energy can be used by integrating
along the element length as:

T° :LL#RI ‘R, dx
2% ()

Substituting equation (4) into equation (5), we obtain:

T’ = lJ. 120> +v* +x%0,7 +29x6,) dx -
27 (6)

Equation (6) gives the total kinetic energy of the first
link. According to Fig. 1, the displacement and
angular velocity vectors for an element of the second
link can be expressed by:

mZZ(éZ +V;)k. (8)
The absolute position and velocity of a particle of the

second link in its coordinate system can be written by
the following equations:

R, =Rj#T, , )
R, :Rﬂﬂ"2 (10)
R =V i+V, _]+l‘2 (a1
RZ:(VOX—VQQ)I-F( Vi +x0, +9)j (12)

R,, is the position vector of the second joint, which
is located at the beginning of the second link. V. and
V,, are the components of the absolute linear velocity

at the beginning point of the second link in the local
coordinate system. The kinetic energy for an element
of this link is defined as:

.1 . .
T, =5J'l“,u R, -R,dx . (13)

Now, by substituting equation (12) into equation (13),

w2 +v0,7 =2V, w8, +

VU§+x292 +v +2V0yx92+2V0y\>+ (14)
2x6, V) dx.

Equation (14) gives the total kinetic energy of the
second link.

2.2 Potential Energy
It is assumed that bending is the only source of
potential energy in the first and second linkages. The
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euler-Bernoulli beam theory is applied to calculate
the potential energy resulting:

1 0%y

U, = EL“ EI(S)dv (15)
1 0%y

U2 = EJ.I" EI( ax—z)dx . (16)

2.3 Finite Element Modeling

There are several methods for modeling the system.
These methods include the assumed mode method,
lumped method, and the finite element method.
Among these the finite element method is the most
accurate and popular one, thus, this method has been
selected for describing the movement of the flexible
members. In this method, the deformations are
usually written as following:

v(x,2) =[N(x)Hq(®)} , a7

where, [N(x)]is the row matrix of the shape
functions and {q(¢)}is the nodal variable vector.
Substituting v(x,¢)into the kinetic energy formula,

and evaluating the integral, the kinetic energy for the
elements of the first and the second linkages can be
obtained as:

T, :%qTMlqélz +%(']TM1('] +%1912 +q"a’o,, (18)
T, = (M2 +a" M, 2 a0,

+ MV, +4" MG +10," +2V, @' M + (19)
2V, M0, +2q"a"0,),

in which, M, ,M, , M, M,/ and a are defined as:

M, =], u()(N" (17).N(p))J dn
M, =", u()N" ()J dn

M=, ,u(?])(%(Zi—1+77)l“)Jdr7, (20)
M, =1" um)Jdn,

1=L, WD i Vi) .

a=l", ﬂ(n)(% Qi~1+7)N@).Jdoy.

The potential energy of the first and second links can
be calculated using the same procedure as:

1
U, =5qTK|q, @n

1
U, = EqTKz q, (22)
where, K, and K, are defined as:

K =, EI)N"(n)N"(ip)J 7y . (23)

To derive the governing equations, Hamiltonian
principle, which is defined by the following formula,
is used:

5 jf (T =Udt = 0, (24)

where, 7 and U are the kinetic and potential
energies, respectively. Now, substituting equations
(20) rand (22) into equation (24), the governing
equations are obtained in the form:

M, q, + alTél +[K, —M, 1612 la, =K,

) .. . ) .. . (25)
aq,+16, +2q1TM1 a9, +(11TN[1 a0, =£,

]292 +q2TM12q29'2 +a,q, —qu VOXM22+

VoMo 20, M@0, =8,V My, =B,
a,' 0, +M,,d, +K,q, -M,0,’q, + M,/
+M, V. 0, =F;,.

Assembling the mass and the stiffness matrices, the
dynamic equations of the manipulator will have the
following forms:

* é] * e1 *
M. r+K; =F . 27
q, q,
. ;
M;{?Z}m;{ 2}+c; _F
q, q,

It should be noted that qis the nodal displacement
and the other parameters are defined as:
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3. Numerical Solution and Simulation Results osb— -7 --H--- e e T e
In this section, the numerical solutions and<'the | | | | | | | |
simulation results of a flexible manipulator s ‘e e ez es o4 os Tes o7 os o8 1

presented. A computer program was developed for
solving the system of equations using. the finite
difference method. Table 1 indicates the parameters
used in the numerical solution. The computer code

Fig. (3): Actuating torque applied to joint two.

was executed with quadratic torques applied at joints ' T T

1 and 2. The profiles of the quadratic torque used in as———:#——:#——:P——:#——:#——J:f——%——%——%——
this simulation are shown in Fig’s 2-3. Under this N R S S N
condition, variation of the joint ‘angles and the s
angular velocity of the/two links are considered. L e e o
Figures 4 and 5 show the first and second joint angle I IO N B N BN N SR S S
variations with respect to time. Fig’s 6-7 show the g N O
displacement of two points:located at the end of the Boab - obo bbb S
two links. The rotation of the tangent line at end N R N N DN S S
points is shown in Fig’s 8-9. Fig’s 10- 15 show the < A N

rate of the mentioned quantities. These are the T i S
angular velocities of the first and second links, the I R T O R S R S S B
linear velocity of the ends of two links, and their 5 S R N R
angular velocity of the tangent line at the end, Sy S TR ra—

Time(Sec)

respectively.

Fig. (4): Joint angle versus time at first joint.
Table (1): Problem parameters.

El H L
(N.m’) (kg/m) (m)

200 1 1
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Fig. (7): End point displacement of the second link.
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Fig. (8): Rotation of tangent line at the end point of first link.
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Ang-Velocity(Rad/Sec)

4. Conclusions

In this paper, a new procedure is described for
nonlinear finite element modeling of flexible
manipulator by which the dynamic equations are
deduced. The procedure for modeling a flexible
manipulator uses the kinetic and potential energies
and the Hamilton principle to derive the dynamic
equations. The square torque is then applied:to the
joints of the flexible manipulator to simulate of their
dynamic behavior. for a two degrees of freedom
manipulator, there is no fluctuation in the angle of the
first member, however, the variation of the angle for
the second member is considerate. Thus, the flexible
manipulator doesn’t perform its task accurately. The
deviation of the second member is more than the first
one. Thus, the error for the exact determination of the
end—effector position.is important. The reason of the
higher vibration in the second link is its connection to
the end of the first‘one and also its superimposed
vibration.
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