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ABSTRACT 
In this research, the continuous adjoint method is applied to optimize an airfoil in subsonic and transonic flows. 
An Euler flow solver is used to analyze the inviscid compressible flow over airfoils in each design cycle. Two 
design problems appearing in aerodynamic shape optimization, namely inverse pressure design and drag 
minimization were investigated. In the first part, a test case was carried out to evaluate the performance of the 
adjoint method in inverse design problem. The results show that we can use the adjoint method as an efficient 
tool in inverse aerodynamic design problems. In the second part, the constrained optimization was investigated in 
a drag minimization problem. The investigated samples show that a small variation of airfoil geometry has caused 
considerable decrease in the drag coefficient. To evaluate the performance of the adjoint method in design 
problems with numerous design variables and also to evaluate the effects of the adoption of the design vector on 
the optimization results, the constrained drag minimization was performed using two different design vectors. 
The results shows that the mechanism and the value of drag reduction are affected by the type of design vector. 
Also, computational cost of the adjoint method are independent of the number of design variables. 
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:چكيده
و گذر صوت به كارگرفته شد ها در جريان روش الحاقي پيوسته به منظور بهينه كردن ايرفويل،در اين تحقيق يـك. استههاي مادون صوت

دو مساله. لزج اطراف ايرفويل در هر سيكل طراحي مورد استفاده قرار گرفت حل كننده جريان به منظور حل ميدان جريان تراكم پذير غير 
شد،)كه معمولا در بهينه سازي شكل آيروديناميكي مطرح مي شوند( طراحي  و كمينه سازي پسا بررسي .نداه يعني طراحي فشار معكوس

مي. كوس اجرا گرديد در بخش اول، مثالي به منظور ارزيابي عملكرد روش الحاقي در مساله طراحي مع  روش الحـاقي كـه دهـد نتايج نشان
در،در بخش دوم. تواند به عنوان يك ابزار كارآمد در مسائل طراحي معكوس آيروديناميكي مورد استفاده قرار گيرد مي  بهينه سـازي مقيـد

كـيدهـد كـه يـك تغ هاي بررسي شده نـشان مـي مثال. مساله كمينه سازي پسا مطالعه گرديد  اهش قابـل يـر كوچـك در هندسـه باعـث
و همچنين به منظـور. شودملاحظه اي در ضريب پسا مي به منظور ارزيابي عملكرد روش الحاقي در مسائل با تعداد متغيرهاي طراحي زياد

نتـايج. متفـاوت انجـام گرديـد بررسي تاثير بردار طراحي بر روي نتايج بهينه سازي، كمينه سازي مقيد پسا با استفاده از دو بردار طراحي 
و مقدار كاهش پسا توسط نوع برداري طراحي متاثر مي شود   هزينه محاسباتي روش الحاقي مـستقل،همچنين.نشان مي دهد كه مكانيزم

. از تعداد متغيرهاي طراحي است
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1. Introduction 
Engineers continually strive to improve their 
designs, both to increase their operational 
effectiveness and their market appeal. In the design 
of a complex engineering system, relatively small 
design changes can sometimes lead to significant 
benefits. For example, small changes in wing 
section shapes can lead to large reduction in shock 
strength in transonic flow. Changes of this type are 
unlikely to be discovered by trial and error 
methods, and for such situations that optimization 
methods can play an important role. 

In the past for a suitable design that provides a 
desired aerodynamic performance, designers 
needed to build numerous models for wind tunnel 
testing to confirm the final design performance. 
Such a design process does not allow for vast 
numbers of design iterations or variables to be 
considered. The development of computational 
fluid dynamics during recent decades has made 
possible to evaluate alternative designs by 
numerical simulation. The use of computational 
simulation to scan many alternative designs has 
proved extremely valuable in practice, but it still 
suffers the limitation finding the best possible 
design. To ensure the recognition of the true best 
design, the ultimate goal of computational 
simulation methods should not just be the analysis 
of prescribed shapes, but automatic determination 
of the true optimum shape for the desired 
application. This is the underlying motivation for 
the combination of computational fluid dynamics 
with numerical optimization methods. 

The adjoint method is one of a gradient-based 
method which has been used extensively in many 
aerodynamic optimization problems in recent 
decades. Studies of using of the adjoint approach 
for optimum shape design of systems governed by 
elliptic equations were initiated by Pironneau [1]. 
The adjoint equations approach to optimal 
aerodynamic design was first applied to transonic 
flow by Jameson [2-4]. He formulated the method 
for inviscid compressible flows with shock waves 
governed by both the potential flow and the Euler 
equations [2]. He implemented the method using 
surface points as design variables merely and didn't 
investigate the effect of design variables vector on 
the results. Elliot and Peraire [5] used the discrete 
adjoint method on unstructured meshes for the 
inverse design of airfoils and in transonic flow to 
produce specified pressure distributions. But they 
presented merely the complete formulation of the 
optimal design problem for three dimensions 
inverse design problem using the adjoint method. 
Also, they didn't investigate the drag minimization 
problem and the effect of design variables on the 
optimization results. In [6], Dadone and Grossman 

explored the discrete adjoint method and applied it 
in the progressive optimization strategy. A 
comparison of both continuous and discrete adjoint 
approaches was conducted by Nadarajah and 
Jameson [7-9]. Baysal and Ghayour [10] derived 
the adjoint equations in Cartesian coordinates on an 
unstructured grid system using Roe's schemes. 
Vitturia, and Beuxb [11] implement the discrete 
adjoint approach for aerodynamic optimization in 
turbulent viscous flow. The adjoint method has also 
been used by many researchers in aerodynamic 
optimization including Xie [12], Qiao [13], Gauger 
[14], Dwight [15], Amoignon [16] and Hazra [17].  

The objective of the present paper is to 
implement the adjoint approach for airfoils 
optimization in inverse pressure design and 
constrained drag minimization problems. First, an 
inverse design problem is solved to evaluate the 
optimization algorithm. Second, in the drag 
minimization problem, the optimization is 
performed in a fixed lift coefficient and angle of 
attack is applied as an additional design variable to 
fix lift during the design process. To evaluate the 
performance of the adjoint method in design 
problems with numerous design variables and also 
to evaluate the effects of the adoption of the design 
vector on the optimization results, the optimization 
is performed using two different design vectors. 
The objective in this study is not merely 
implementation of the adjoint method. However the 
objective is implementation and using of adjoint 
method in order to achieve some results and facts.  
In fact, we applied adjoint method for inverse 
design and drag minimization problems and 
investigated effect design variables vectors on 
results of the optimization. The result was shown 
that the mechanism, value and the trend of drag 
reduction during the optimization process strongly 
affected by the type of design vector.  

2. General Description of the Adjoint Method 
For flow over an airfoil or wing, the aerodynamic 
characteristic defining the cost function (I) are 
dependent on the flow field variables (w) and the 
physical location of the boundary, which may be 
represented as the function F:  

),( FwII . (1)  

Since w depends on F, a change in F changes the 
cost function as:  

F
F
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w
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I
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The first term is the contribution of the variation w 
in the flow field and the second term is the direct 
effect of the geometry change. Assume R is the 
governing equation which expresses the relation of 
w and F in the flow field domain D, as:  

R (w,F)=0. (3)  

Then w is determined, using the equation:  

0F
F

R
w

w

R
R

III

. (4)  

Since the variation R

 

is zero, it can be multiplied 
by a Lagrange Multiplier 

 

and subtracted from the 
variation I

 

with no change in the result. Thus Eq. 
(2) can be replaced by:  
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(5)  

In order to eliminate the dependency of I

 

to w,  
must satisfy the adjoint equations:   

w

I

w

R
T

. (6)  

The first term is eliminated and we find that:   

FGI , (7) 

F

R

F

I
G T

T

 

(8)  

According to Eq's. (7) and (8), I

 

is independent of  
w

 

and as a result, for numerous design variables 
we can compute the gradient vector (G) with only 
one flow solution  in addition to one adjoint 
solution in each design cycle. It should be noted 
that the computational cost of one adjoint solution 
is less than one flow solution. After calculating the 
gradient vector, we can improve the design 
variables using an optimization algorithm such as 
steepest descent method or smoothed steepest 
descent algorithm.        

3. Governing Equations 
In this study the Euler equations are the governing 
equations of the field. The conservative form of 
two-dimensional Euler equations is as: 

0
i

i

x
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w , (9)  

where, w is flow variables and 
if is the inviscid 

flux vector:  
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and 
ij

 

is the Kronecker delta function and:  
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pEH . (12) 

 

In these definitions, , E, H, 

 

are density, total 
energy, total enthalpy and heats ratio respectively. 
Using a transformation from physical coordinates 

),( 21 xx to computational coordinates ),( 21
, the 

Euler equations can be written as:   

0)(WR
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W , (13) 

jiji
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The scaled contravariant velocity components are 
introduced as:  

jiji uSU . (16)   

In the computational domain, airfoil surface
WB is 

represented 02 . The boundary condition on the 

airfoil surface is:  

WBOnU 02
. (17)  

On the far field boundary, the free stream condition
is applied. 

A finite-volume technique with an artificial 
dissipation method introduced by Jameson et al. 
[18], is used to discrete the integral form of the 
conservation equations. For temporal 
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approximation, we applied the five stage modified 
Runge-Kutta approach. Since the time step in 
explicit methods is small, we applied the 
convergence acceleration techniques, local time 
stepping and residual averaging, to accelerate the 
convergence rate. 

 

4. Adjoint Equations 
In this section, we drive the adjoint equations and 
its boundary conditions for inverse design problem.  
The design problem can be studied as a control 
problem choosing airfoil surface as the control 
function to minimize the cost function I subject to 
constraints defined by the flow equations. The cost 
function for inverse design problem is defined as: 

 

Bw

d dsppI 2)(
2

1 , (18) 

 

or in the computational domain 

 

Bw

d ddsppI 2)(
2

1 , (19) 

 

where, 
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. (20) 

 

dp is the desired pressure on the surface. A 

variation in the shape results in a variation I

 

in the 
cost function: 
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From Euler equations in the steady state: 
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Multiplying Eq. (22) by a co-state variable vector, 

 

and integrating over the domain, we have: 

 

0
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Assuming 

 

is differentiable and integrating by 
parts gives: 
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where, 

in are the components of the unit vector 

normal to the surface in computational domain. 
Adding Eq. (26) to the variation of cost function, 
we have: 
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where, 
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(28) 

 

From the third integral of Eq. (27), to eliminate the 
term, which contains w, the adjoint equations can 
be obtained: 
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where, 

 

is adjoint variables vector. From flow 
boundary condition on the surface (Eq. (17)):  
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The first and fourth integral in Eq. (27) with the 
above equation follows the adjoint boundary 
condition on the surface: 

 

dppnn 2312
, (31) 

 

where, 
1n and 

2n are the components of unit vector 

normal to the surface: 
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But for better convergence and easier 
implementation, the adjoint boundary conditions on 
the surface can be derived as follow [10]: 
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where, 

dpp . (34) 

 

The subscripts (i,1) and (i,2) in the above equations 
denote cells below and above the wall. On the far 
field, with attention to fourth integral in Eq. (27), 
we must choose the  such that: 

0i
T

i Cn . (35) 

 

For subsonic and transonic flows that the outer 
boundary is far from the body, we can set: 

 

041
. (36) 

Because of the similarity of the adjoint equations to 
flow equations, the same numerical methods used 
to solve the flow equations can be used to solve the 
adjoint equations. This greatly simplified the 
procedure to implement the adjoint module. 

If the coordinate transformation is such that 

2221 SandS are negligible in the far field, then the 

final expression for I can be written as: 
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5. Constrained Optimization 
In the drag minimization problem, we want to 
maintain the lift coefficient constant and equal to its 
initial value by changing the angle of attack. 
Therefore, in this case: 

ddd
d
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and the additional constraint is: 

0lll
l

C
F

F

C
w

w

C
C , (39) 

or  

.
l

ll

C

F
F

C
w

w

C

    
(40) 

The angle of attack is updated using Eq. (40) in 
each design cycle. To compute 

 

we need to 

solve an additional adjoint equation. The derivation 
process of adjoint equations and its boundary 
conditions for the drag minimization is similar to 
the inverse design problem. For the drag 
minimization problem, Eq. (33) can be used to 
apply adjoint boundary condition. For the drag 
minimization problem,

 
in Eq. (33) is [10]: 
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(42) 

where, p and M are the free stream pressure and 

Mach number, c is chord length, 

 

is ratio of 
specific heats, 

 

is angle of attack and 
lC is lift 

coefficient.  

6. Cost Function and Design Variables 
The choice of design variables is one of the most 
crucial steps in any optimization procedure. The 
success of the optimization of the model problem 
depends on both the choice of design variables and 
the cost function.   

6. 1 Cost Function 
The cost function for the inverse design problem in 
computational domain is defined as Eq. (19). The 
cost function for the drag minimization problem in 
computational domain is defined as:  

.)sincos(
2

22212
dSSp

cMp
C

Bw

d

 

(43)  

6. 2 Design Variables 
In the present work are utilized two approaches of 
parameterizing the airfoil. One approach employs 
the surface mesh points and the other one uses the 
definition of the NACA 4-digit airfoil series. The 
use of the surface mesh points as design variables 
ensures that there is no restriction on the attainable 
geometry. Since the cost of the adjoint approach is 
independent of the number of design variables, it is 
feasible to use the surface points as design 
variables, whereas the cost would be prohibitive if 
the gradients were computed by the traditional 
finite-difference method. In this case, design 
variables are y components of mesh points on the 
surface. In NACA 4-digit airfoil series, three 
parameters, m (the maximum mean camber), p (the 
chordwise position of the maximum mean camber) 
and t (maximum thickness of the airfoil) are used to 
define the airfoil shape. In present work m, t are 

Archive of SID

www.SID.ir

www.sid.ir
www.sid.ir


80                                                                Mech. & Aerospace Eng. J. (Fluids & Aerodynamics), Vol. 5, No. 1, Spring 2009

  
taken as design variables and p is assumed to be 
0.4.  

7. Optimization Algorithm 
After calculation of the gradient vector, we can 
change the design variables using an optimization 
algorithm. In this work steepest descent algorithm 
and smoothed steepest descent algorithm has been 
adapted to treat the design variables towards 
optimum values. In the steepest descent algorithm, 
the design variables vector x can be updated as: 

fxx nn 1
, (44)  

where, 

 

is the step length and f

 

is gradient 

vector of the cost function. It should be noted that 
the convergence rate of the optimization program is 
strongly dependent on the step size of 

 

in 
optimization algorithm. In the smoothed steepest 
descent algorithm, the design variables vector x can 
be updated as: 

fx . (45)  

We replace the gradient f

 

by a smoothed value 

f . To apply smoothing in the x direction, the 

smoothed gradient f

 

may be calculated using a 

discrete approximation such as:  

fff

 

(46)  

where,  is the smoothing parameter. The 
smoothing ensures that each new shape in the 
optimization process remains smooth. 
Consequently it is necessary to smooth the gradient 
vector when we apply surface points as design 
variables. The smoothing also allows us to use 
much larger steps, and leads to a large reduction in 
the number of design iterations. The larger 
smoothing parameter allows a larger time step to be 
taken and this leads to accelerate the convergence.  

8. Grid Modification 
Jameson [2, 4] introduced a grid perturbation 
method that modifies the current location of the 
grid points based on perturbations at the surface 
geometry. The approach is not dependent on the 
method of structured grid generation. This method 
was also successfully used by Burgreen et al. [19].  
In this method, the grid points are modified along 
each grid index line projecting from the surface. At 
first, the arc length between the surface point and 
the far-field point along the grid line is computed 
and then the grid points at each location along the 
grid line are attenuated proportional to its arc length 

distance from the surface point and the total arc 
length between the surface and the far-field. The 
algorithm can be described as:  

)(

,....,2

)(

1,1,,,

max

1,1,,,

old
i

new
ij

old
ji

new
ji

old
i

new
ij

old
ji

new
ji

yyCyy

jj

xxCxx 

(47)  

where, i is the current grid index. The vector 
jC 

can be defined as: 
2)23(1 jjj NNC

 

(48)  

where, 
jN is the ratio of the arc length from the 

surface to the current grid point and the total arc 
length from the surface to the far-field along the 
grid line that can be written as: 
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9. Optimization Results 
Finally, the design procedure using the adjoint method 
can be summarized as Fig. 1. 

                      

Fig. (1): Design cycle.   

9. 1 Inversed Design Problem 
In this test case, NACA2415 is designed from 
NACA4418 airfoil. The flow is subsonic with 
Mach number of 0.65. Both the initial and target 
airfoils are at zero degree angle of attack. Airfoil 
camber (m) and its thickness (t), which are two 
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parameters in NACA-4digit airfoils definition, are 
used as the design variables. A 160×80 cells O-
Type grid is employed in this calculation. The 
initial value for m, t are 0.04, 0.18 and the target 
value are 0.02, 0.15.  

Table 1 presents the design results. The optimal 
values for t and m are very close to the target 
values. It should be noted that convergence of the 
gradient vector norm was considered as the 
convergence criteria of the optimization program.  

Table (1): Design results.   

Initial   Optimal 

 

m  0.0400 0.02004 

 

t  0.1800 0.15009 

 

I  122E-4 179E-7 

G 7.56E-1 3.80E-3 

 

Figure 2 shows the convergence history of the cost 
function. The convergence rate is very sharp at 
initial cycles (the main variations of the cost 
function approximately occur during 20 initial 
cycles) and after 60 cycles the convergence rate 
approaches to zero. The final design is obtained 
after 85 design cycles.  

Figure 3 shows the convergence history of the 
norm of gradient and its components during the 
design process. In Fig. 3, the norm of the gradient 
vector and its components are given simultaneously 
to show the convergence rate of both the gradient 
norm and its components. It can be seen that the 
trend is similar to that of the cost function.  

Figure 4 shows variations of the pressure 
coefficient and the shape during the design process. 
It can be seen that the pressure distribution 
approaches to that of the NACA2415.   
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C
os

tF
un

ct
io

n
(

I
)

0 20 40 60 80

0

0.002

0.004

0.006

0.008

0.01

0.012 

Fig. (2): Convergence histories of the cost function 
for the inverse design problem. 
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Fig. (3): Convergence history of the norm of the 
gradient vector and its components for the inverse 
design problem. 
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Fig. (4): Variations of pressure distribution and 
airfoil shape in the inverse design problem.  

To validate the adjoint code, the gradients of the 
adjoint method were compared with those of the 
finite difference method. Table 2 compares results 
of adjoint method and the finite difference method. 
It can be seen that a very good conformity of the 
finite difference and adjoint gradients.   

Table (2): Comparison of the adjoint and the finite 
difference methods.   

mI /  tI / 

 

Adjoint Method  0.7454 0.1263 

 

Finite Difference Method  0.7446 0.1259 

   
tI
mI

G

/
/ 
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9. 2 Drag Minimization Problem 
In this case, we have implemented the method in 
the constrained drag minimization. To evaluate the 
performance of the adjoint method in design 
problems with numerous design variables and also 
to evaluate the effects of the adoption of the design 
vector on the optimization results, the constrained 
drag minimization is performed using two different 
design vectors. In first test case, the surface points 
are used as the design variables and in the second 
test case, m and t are adopted as design variables. 
The design is started by a NACA0012 airfoil at 3.0 
degrees angle of attack. The flow is transonic with 
Mach number of 0.75. We performed computations 
on a 160×80 O-grid.   

A. the optimization using the surface points 
(Test Case I) 
Table 3 represents the design results. The reduction 
in the drag coefficient is considerable. We obtained 
80.7 percents reduction in drag coefficient but lift 
coefficient variations is very small (1.4 percents).  

Table (3): Design results.   

Initial   Optimal 

 

dC 0.0317 0.0062 

 

lC 0.6027 0.5937 

    

3 1.17 

 

Figure 5 represents the convergence of the cost 
function. This figure shows that full convergence of 
aerodynamic optimization is obtained after 260 
design iterations. 49.65 percents reduction in drag 
coefficient is attained after 30 design cycles. Only 
1.74 percents drag reduction is obtained during 120 
final cycles. Figure 6 shows the convergence 
history of the norm of gradient during the design 
process. According to this figure the trend is similar 
to that of the cost function variations.  
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Fig. (5): Convergence histories of the cost function 
for the drag minimization problem. 
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Fig. (6): Convergence history of the norm of the 
gradient vector for the drag minimization problem.  

Figure 7 shows the geometry of initial and optimal 
airfoils. The change in the upper surface and 
around the trailing edge is considerable, whereas 
the change in the lower surface is very small. 
Figure 8 compares the initial and optimal pressure 
contours. Figure 9 represents the initial and optimal 
pressure coefficients. The figure shows that the 
strong shock on the initial airfoil surface has been 
strongly weakened and consequently the drag 
coefficient has been reduced but the surface area 
under the curve which is represented the value of 
the lift coefficient has been remained constant and 
consequently this coefficient is nearly the same for 
both the initial and optimal airfoils. Figures 7 and 9 
show that the upper surface of the optimal airfoil 
has approached to a flat geometry. The flat surface 
has weakened the strength of the shock wave. 
Further more the geometry of the airfoil at the 
trailing edge has curved downward to compensate 
the reduction of the lift coefficient due to 
weakening the strength of the shock. It should be 
noted that for propose of fixing the lift coefficient, 
the angle of attack is considered as an extra design 
variable. 
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Fig. (7): Comparison of NACA0012 airfoil and 
optimal airfoil for the drag minimization problem.  
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Fig. (8): Pressure distribution contours for the drag 
minimization problem. (a) Initial and (b) optimal 
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Fig. (9): Comparison of pressure coefficient of 
NACA0012 and optimal airfoils for the drag 
minimization problem.   

B. the optimization using the relations of the 
NACA 4-digit airfoil series (Test Case II) 
Table 4 represents the design results. The reduction 
in the drag coefficient is considerable. We obtained 
83.28 percents reduction in drag coefficient but lift 
coefficient variations is very small (0.4 percents).  

Table (4): Design results.   

Initial   Optimal 

 

m   0.00 0.01072 

 

t  0.12 0.0501 

 

dC  0.0317 0.0053 

 

lC 0.6027 0.6003 

    

3 2.24 

 

Figure 10 gives the variation of the cost function 
with design cycle. For this problem, the design 
cycle has 170 iterations. The drag coefficient 
reduction is 81.92 percents during the first 80 
design cycles. This coefficient has only 1.36 
percents reduction the last 90 cycles.  

Figure 11 shows the variation of the norm of 
the gradient vector with design cycle. The trend is 
similar to that of the cost function. Regarding to 
Fig's. 10-11 the convergence of the optimization 
program is evident.  

Figure 12 gives the pressure coefficients on 
upper and lower surface of initial and optimal 
airfoils. It is seen that the location of the shock 
wave has changed and its strength is reduced. But 
the surface under the curve is remained constant 
which reveals no change in lift coefficient. It is 
clear that the drag coefficient reduction has been 
achieved due to reduction of thickness, whereas 
increase of the camber has led to increase the lift 
coefficient. In fact the reduction of the lift due to 
the reduction of the thickness has been 
compensated by increase of the camber. More over 
the variation of the angle of attack is such that the 
lift coefficient remains constant. 

 Figure 13 shows the pressure contours around 
the initial and optimal airfoils. Regarding to this 
figure, the shock wave has moved toward the 
leading edge and its strength is considerably 
reduced.  

It should be noted that the convergence rate of 
the optimization program is strongly dependent on 
the step size of 

 

in optimization algorithm. If the 
step size was taken larger, it increased the 
convergence rate. But adoption of a larger step size 
for 

 

leads to increase in geometry parameters 
(design variables) and decrease in accuracy of the 
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calculated gradients. Sometimes larger step size 
caused oscillatory behavior of the gradients. More 
over adoption of smaller step size for 

 
led to 

increase in number of design cycles.  
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Fig. (10): Convergence history of the cost function 
for the drag minimization problem.  
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Fig. (11): Convergence history of the norm of the 
gradient for the drag minimization problem.  
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Fig. (12): Comparison of pressure coefficient and 
geometry of NACA0012 and optimal airfoils for 
the drag minimization problem. 
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Fig. (13): Pressure distribution contours for the 
drag minimization problem. (a) Initial and (b) 
optimal. 

It is known that the location and strength of a shock 
wave in transonic regime is a main parameter in 
drag calculation. Comparison of results of the 
optimization problem using two different design 
vectors, in on of them the surface points are 
considered as design variables and in the other one, 
the parameters of four digit NACA airfoil are 
design variables (Fig's. 8 and 13 or Fig's. 9 and 12), 
shows that when the surface points of the airfoil are 
design variables the upper surface geometry 
changes such that the strength of the shock wave is 
reduced but the location of the shock wave has no 
change, in fact the drag reduction is carried out via 
the variation of the curvature only at region of the 
shock wave. And the lift coefficient is recovered 
via the increase in curvature only at the trailing 
edge region. When the thickness and camber of 
NACA four digits were considered as design 
variables, the shock wave moves toward the leading 
edge and the strength is reduced. In fact the drag 
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reduction is carried out via reduction of the 
thickness on all of the surface points and recovery 
of the lift coefficient is achieved with increasing the 
camber on all of the surface points. 

Table 5 summarizes the required runtime and 
number of adjoint and flow solvers to achieve the 
convergence of the optimization program for the 
constrained drag minimization problem. The used 
computer specification is "Intel(R) Core(TM) Due 
CPU T2450@ 2.00GHz, 1GB of RAM".   

 

Table (5) Runtime and number of adjoint and flow 
solvers of the drag minimization problem. 

  

Test Case I  

  

Test Case II 

   

Runtime 

   

504 minutes 425minutes 

 

Number of 
Adjoint Solvers 

 

440 340 

 

Number of 
Flow Solvers 

  

220 170 

 

Number of 
Design Cycles  

 

220 170 

 

10. Conclusion 
In this paper, we implemented the adjoint method 
for the inverse pressure design and the constrained 
drag minimization problems. In the inverse design 
problem, values of camber and thickness (design 
variables) were obtained successfully. The results 
of the test case show that we can use the adjoint 
approach as an efficient tool in airfoil inverse 
design problem. To evaluate the performance of the 
adjoint method in design problems with numerous 
design variables and also to evaluate the effects of 
the adoption of the design vector on the 
optimization results, the minimization was 
performed using two different design vectors. It 
was shown that the mechanism and the trend of 
drag reduction during the optimization process 
strongly affected by the type of design vector. By 
using this method, we can design high lift or low 
drag airfoils according to the desired surface 
pressure.   
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