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ABSTRACT

In this research, the continuous adjoint method is applied to optimize an airfoil in subsonic and transonic flows.
An Euler flow solver is used to analyze the inviscid compressible flow over airfoils in each design cycle. Two
design problems appearing in aerodynamic shape optimization, namely inverse pressure design and drag
minimization were investigated. In the first part, a test case was carried out to evaluate the performance of the
adjoint method in inverse design problem. The results show that we can use the adjoint method as an efficient
tool in inverse aerodynamic design problems. In the second part, the constrained optimization was investigated in
a drag minimization problem. The investigated samples show that a small variation of airfoil geometry has caused
considerable decrease in the drag coefficient. To evaluate the performance of the adjoint method in design
problems with numerous design variables and also to evaluate the effects of the adoption of the design vector on
the optimization results, the constrained drag minimization was performed using two different design vectors.
The results shows that the mechanism and the value of drag reduction are affected by the type of design vector.
Also, computational cost of the adjoint method are independent of the number of design variables.
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1. Introduction

Engineers continually strive to improve their
designs, both to increase their operational
effectiveness and their market appeal. In the design
of a complex engineering system, relatively small
design changes can sometimes lead to significant
benefits. For example, small changes in wing
section shapes can lead to large reduction in shock
strength in transonic flow. Changes of this type are
unlikely to be discovered by triad and error
methods, and for such situations that optimization
methods can play an important role.

In the past for a suitable design that provides a
desired aerodynamic performance, designers
needed to build numerous models for wind tunnel
testing to confirm the final design performance.
Such a design process does not alow for vast
numbers of design iterations or variables to be
considered. The development of computational
fluid dynamics during recent decades has made
possible to evaluate alternative designs by
numerical simulation. The use of computational
simulation to scan many aternative designs has
proved extremely valuable in practice, but it still
suffers the limitation finding the best possible
design. To ensure the recognition of the true best
design, the ultimate goa of computational
simulation methods should not just be the analysis
of prescribed shapes, but automatic determination
of the true optimum shape for the desired
application. This is the underlying motivation for
the combination of computational fluid dynamics
with numerical optimization methods.

The adjoint method is one of a gradient-based
method which has been used extensively in many
aerodynamic optimization problems in recent
decades. Studies of using of the adjoint approach
for optimum shape design of systems governed by
dliptic equations were initiated by Pironneau [1].
The adjoint equations approach to optimal
aerodynamic design was first applied to transonic
flow by Jameson [2-4]. He formulated the method
for inviscid compressible flows with shock waves
governed by both the potential flow and the Euler
equations [2]. He implemented the method using
surface points as design variables merely and didn't
investigate the effect of design variables vector on
the results. Elliot and Peraire [5] used the discrete
adjoint method on unstructured meshes for the
inverse design of airfoils and in transonic flow to
produce specified pressure distributions. But they
presented merely the complete formulation of the
optimal design problem for three dimensions
inverse design problem using the adjoint method.
Also, they didn't investigate the drag minimization
problem and the effect of design variables on the
optimization results. In [6], Dadone and Grossman

explored the discrete adjoint method and applied it
in the progressive optimization strategy. A
comparison of both continuous and discrete adjoint
approaches was conducted by Nadargjah and
Jameson [7-9]. Baysal and Ghayour [10] derived
the adjoint equations in Cartesian coordinates on an
unstructured grid system using Roe's schemes.
Vitturia, and Beuxb [11] implement the discrete
adjoint approach for aerodynamic optimization in
turbulent viscous flow. The adjoint method has also
been used by many researchers in aerodynamic
optimization including Xie [12], Qiao [13], Gauger
[14], Dwight [15], Amoignon [16] and Hazra[17].

The objective of the present paper is to
implement the adjoint approach for airfoils
optimization in inverse pressure design and
constrained drag minimization problems. First, an
inverse design problem is solved to evaluate the
optimization algorithm. Second, in the drag
minimization problem, the optimization is
performed in a fixed lift coefficient and angle of
attack is applied as an additional design variable to
fix lift during the design process. To evaluate the
performance of the adjoint method in design
problems with numerous design variables and also
to evaluate the effects of the adoption of the design
vector on the optimization results, the optimization
is performed using two different design vectors.
The objective in this study is not merely
implementation of the adjoint method. However the
objective is implementation and using of adjoint
method in order to achieve some results and facts.
In fact, we applied adjoint method for inverse
design and drag minimization problems and
investigated effect design variables vectors on
results of the optimization. The result was shown
that the mechanism, value and the trend of drag
reduction during the optimization process strongly
affected by the type of design vector.

2. General Description of the Adjoint Method
For flow over an airfoil or wing, the aerodynamic
characteristic defining the cost function (I) are
dependent on the flow field variables (w) and the
physica location of the boundary, which may be
represented as the function F:

I =1(w,F). D

Since w depends on F, a change in F changes the
cost function as:

e o

ow oF
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Thefirst term is the contribution of the variation ow
in the flow field and the second term is the direct
effect of the geometry change. Assume R is the
governing equation which expresses the relation of
w and F in the flow field domain D, as:

R (w,F)=0. ©)

Then ow is determined, using the equation:

R oR
wHwlZe0

Since the variation JR is zero, it can be multiplied
by a Lagrange Multiplier  and subtracted from the
variation ¢l with no change in the result. Thus Eqg.
(2) can be replaced by:

T T
gz syl OF -y’ ([aR}é\N+
ow oF oW
oR o’ [er
)= —y T | == sw+
[GF} ) {aw v [GW}} ®)

2" v[=] =

In order to eliminate the dependency of 4l to ow, y
must satisfy the adjoint equations:

orRT ol
{aw} V/=%' (6)

Thefirst term is eliminated and we find that:

8N =GoF , (7)
a’  i[er]
“oF v [GF} ®

According to Eg's. (7) and (8), Jl is independent of
ow and as a result, for numerous design variables
we can compute the gradient vector (G) with only
one flow solution in addition to one adjoint
solution in each design cycle. It should be noted
that the computational cost of one adjoint solution
is less than one flow solution. After calculating the
gradient vector, we can improve the design
variables using an optimization algorithm such as
steepest descent method or smoothed steepest
descent algorithm.

3. Governing Equations

In this study the Euler equations are the governing
equations of the field. The conservative form of
two-dimensional Euler equationsis as:

ow  of,

—+—=0 >
ot ox ©

where, w is flow variables and f, is the inviscid
flux vector:

P pU;
u u,u, + 9,
W= pPU = puU;U; 1P, (10)
pU, PUU, +6;, P
PE pUH

and 5 isthe Kronecker delta function and:

1
p=r-0p{E-2w)} )
pPH=pE+p. (12)
In these definitions, p, E, H, y are density, total
energy, total enthalpy and heats ratio respectively.

Using a transformation from physical coordinates
(%,,X,) to computational coordinates (&,,&,), the

Euler equations can be written as:

oW

§+R(V\o=o, (13)
R(\N)—% W=Jw, F =S f
= o » W= = (14
6xi _ _ -1,
Kijz{afjjl , J=det(K) , S=JK (15)

The scaled contravariant velocity components are
introduced as:

Ui =S;u;- (16)

In the computational domain, airfoil surfaceB,, is

represented &, = 0. The boundary condition on the
airfoil surfaceis:

U,=0 OnB,. (17)

On the far field boundary, the free stream condition
isapplied.

A finite-volume technique with an artificia
dissipation method introduced by Jameson et al.
[18], is used to discrete the integral form of the
conservation equations. For temporal
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approximation, we applied the five stage modified
Runge-Kutta approach. Since the time step in
explicit methods is small, we applied the
convergence acceleration techniques, local time
stepping and residual averaging, to accelerate the
convergence rate.

4. Adjoint Equations

In this section, we drive the adjoint equations and
its boundary conditions for inverse design problem.
The design problem can be studied as a control
problem choosing airfoil surface as the control
function to minimize the cost function | subject to

constraints defined by the flow equations. The cost
function for inverse design problem is defined as:

_1 2
l_EJV(p_ py)°ds: (18)
or in the computational domain
1 2
=2 [(p—pa)?|dsde (19)
Bw

where,

‘ds‘ =4/ Sy Sy (20)

p, is the desired pressure on the surface. A

variation in the shape results in avariation Jl in the
cost function:

A= [(p-p)opds+ [(p-p)?as- ()

From Euler equationsin the steady state:

0

—a: :Ol

o5 )

O =C dwr &5, 29
of .

C =S A , A=l (24)
ow

Multiplying Eq. (22) by a co-state variable vector,
w and integrating over the domain, we have:

o<
D

oF, A,

Assuming y is differentiable and integrating by
parts gives:

D i

T oy’
J‘ni 174 éFi ng, — I?éF' dD: =0 (26)
B

where, n are the components of the unit vector

normal to the surface in computational domain.
Adding Eg. (26) to the variation of cost function,
we have:

S =
1 )
J(p—pa)dpds+— [ (p—p,)* dds-
Bw Bw (27)
oy’ T
—L—¢F.dD + |(ny " SF,)dB,
I JoweF)
where,
dD =dédy , dB=dé&. (28)

From the third integral of Eq. (27), to eliminate the
term, which contains éw, the adjoint equations can
be obtained:

oy 10y
——C —:O )

ot o (29)
where, y is adjoint variables vector. From flow
boundary condition on the surface (Eq. (17)):

0 0
o=t O Jepl | (30)
0 0

The first and fourth integral in Eqg. (27) with the
above equation follows the adjoint boundary
condition on the surface:

Vo, +ysN, =p— Py (31)

where, n, and n,are the components of unit vector
normal to the surface:

Noo
j SZj SZj : (32

But for better convergence and easier
implementation, the adjoint boundary conditions on
the surface can be derived as follow [10]:
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l//l\,l =l//1i,2’
Va,=Vo2, +2n, (A- Ny, , —NWs )
Vs, =Vs, T 2n, (A- Ny, , —Nys, )

Va,=Wa,»
where,
A= P—Py- (34)

(33

The subscripts (i,1) and (i,2) in the above equations
denote cells below and above the wall. On the far
field, with attention to fourth integral in Eq. (27),
we must choose the y such that:

ni(//TCi = 0 . (35)

For subsonic and transonic flows that the outer
boundary is far from the body, we can set:

Wi4=0. (36)
Because of the similarity of the adjoint equations to
flow eguations, the same numerical methods used
to solve the flow equations can be used to solve the
adjoint equations. This greatly simplified the
procedure to implement the adjoint module.

If the coordinate transformation is such that
3S,,andss,, are negligible in the far field, then the

final expression for Jl can be written as:
8 =2 [(p- p,)? olasaz -
2 Bw

AT _ 3
Iag. 5, f,dédy (37)

D i

_[(6321’//2 +3S,y5) pdé.
Bw

5. Constrained Optimization

In the drag minimization problem, we want to

maintain the lift coefficient constant and equal to its

initial value by changing the angle of attack.

Therefore, in this case:

d=ac, =" g Co g, Loy (39)
ow oF oo

and the additional constraint is:
oC oC oC

&L =—LW+—-F +—5a =0 (39)
oW oF oa
or
soq=—W__ OF
o % (40)
oa

The angle of attack is updated using Eq. (40) in
each design cycle. To compute 6o we need to

solve an additional adjoint equation. The derivation
process of adjoint equations and its boundary
conditions for the drag minimization is similar to
the inverse design problem. For the drag
minimization problem, Eg. (33) can be used to
apply adjoint boundary condition. For the drag
minimization problem, 4 in Eq. (33) is[10]:
-2

A=——="_ [ (n,cosa+n,sina)+
ypMic ’ (41)
®(n, cosa —n, sina) |
oc,
o
D=-
<& (42)
oa

where, p_and M_ arethe free stream pressure and

Mach number, c is chord length, y is ratio of
specific heats, a is angle of attack and C is lift

coefficient.

6. Cost Function and Design Variables

The choice of design variables is one of the most
crucial steps in any optimization procedure. The
success of the optimization of the model problem
depends on both the choice of design variables and
the cost function.

6. 1 Cost Function

The cost function for the inverse design problem in
computational domain is defined as Eq. (19). The
cost function for the drag minimization problem in
computational domain is defined as:

C, = 7}/ o I\/Izj S B'vap(Sn cosa+S,, Sina) dé. (43)
6. 2 Design Variables

In the present work are utilized two approaches of
parameterizing the airfoil. One approach employs
the surface mesh points and the other one uses the
definition of the NACA 4-digit airfoil series. The
use of the surface mesh points as design variables
ensures that there is no restriction on the attainable
geometry. Since the cost of the adjoint approach is
independent of the number of design variables, it is
feasible to use the surface points as design
variables, whereas the cost would be prohibitive if
the gradients were computed by the traditional
finite-difference method. In this case, design
variables are y components of mesh points on the
surface. In NACA 4-digit airfoil series, three
parameters, m (the maximum mean camber), p (the
chordwise position of the maximum mean camber)
and t (maximum thickness of the airfoil) are used to
define the airfoil shape. In present work m, t are
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taken as design variables and p is assumed to be
0.4.

7. Optimization Algorithm

After calculation of the gradient vector, we can
change the design variables using an optimization
algorithm. In this work steepest descent algorithm
and smoothed steepest descent algorithm has been
adapted to treat the design variables towards
optimum values. In the steepest descent algorithm,
the design variables vector x can be updated as:

X" —x" = —aVf | (44)

where, « is the step length and Vf is gradient

vector of the cost function. It should be noted that
the convergence rate of the optimization program is
strongly dependent on the step size of « in
optimization algorithm. In the smoothed steepest
descent algorithm, the design variables vector x can
be updated as:

X=—aVf . (45)

We replace the gradient vf by a smoothed value
Vv . To apply smoothing in the x direction, the

smoothed gradient vV f may be calculated using a
discrete approximation such as:

vt -2 ¢ 0Tt = vt
2 o¢ (46)

where, ¢ is the smoothing parameter. The
smoothing ensures that each new shape in the
optimization process remains smooth.
Consequently it is necessary to smooth the gradient
vector when we apply surface points as design
variables. The smoothing aso allows us to use
much larger steps, and leads to a large reduction in
the number of design iterations. The larger
smoothing parameter alows alarger time step to be
taken and this leads to accel erate the convergence.

8. Grid Modification

Jameson [2, 4] introduced a grid perturbation
method that modifies the current location of the
grid points based on perturbations at the surface
geometry. The approach is not dependent on the
method of structured grid generation. This method
was also successfully used by Burgreen et al. [19].
In this method, the grid points are modified along
each grid index line projecting from the surface. At
first, the arc length between the surface point and
the far-field point along the grid line is computed
and then the grid points at each location along the
grid line are attenuated proportional to its arc length

distance from the surface point and the total arc
length between the surface and the far-field. The
algorithm can be described as:

old

X=X +C; (X1 - XY)
=20 fimax (47)
Y=y +C (- )

where, i is the current grid index. The vector C

can be defined as:
C,=1-(3-2N;)N? (48)

where, N is the ratio of the arc length from the

surface to the current grid point and the total arc
length from the surface to the far-field along the
grid line that can be written as:

i
Z\/()ﬁ/ _)g,/:—l)z +(yi,( - yi,('—l)z
N;= j(.fax

Z\/()ﬁ,f _)ﬁ,(-l)z"'(yi,f - yi,[—l)z

(49)

9. Optimization Results
Findly, the design procedure using the adjoint method
can be summarized as Fig. 1.

[ Initial shape determination

Grid generation

Flow solution

[ Adjoint solution ] [ Grid modification ]

[ Gradient vector calculation ][ Shape modification ]
No

Convergence

End design

Fig. (1): Design cycle.

9. 1 Inversed Design Problem

In this test case, NACA2415 is designed from
NACA4418 airfoil. The flow is subsonic with
Mach number of 0.65. Both the initial and target
airfoils are at zero degree angle of attack. Airfail
camber (m) and its thickness (t), which are two
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parameters in NACA-4digit airfoils definition, are
used as the design variables. A 160x80 cells O-
Type grid is employed in this calculation. The
initial value for m, t are 0.04, 0.18 and the target
value are 0.02, 0.15.

Table 1 presents the design results. The optimal
values for t and m are very close to the target
values. It should be noted that convergence of the
gradient vector norm was considered as the
convergence criteria of the optimization program.

Table (1): Design results.

Initial Optimal

m 0.0400 0.02004
t 0.1800 0.15009

[ 122E-4 179E-7
G| 7.56E-1 3.80E-3

Figure 2 shows the convergence history of the cost
function. The convergence rate is very sharp at
initial cycles (the main variations of the cost
function approximately occur during 20 initial
cycles) and after 60 cycles the convergence rate
approaches to zero. The fina design is obtained
after 85 design cycles.

Figure 3 shows the convergence history of the
norm of gradient and its components during the
design process. In Fig. 3, the norm of the gradient
vector and its components are given simultaneously
to show the convergence rate of both the gradient
norm and its components. It can be seen that the
trend is similar to that of the cost function.

Figure 4 shows variations of the pressure
coefficient and the shape during the design process.
It can be seen that the pressure distribution
approaches to that of the NACA2415.

Cost Function (1)

s s s s L
0 20 40 60 80
Design Cycle

Fig. (2): Convergence histories of the cost function
for the inverse design problem.

osr Il
— alem
---- ala

06

04

Gradient

02

40
Design Cycle

Fig. (3): Convergence history of the norm of the
gradient vector and its components for the inverse
design problem.

.
Vool Initial Airfoil (NACA4418)
\

Fig. (4): Variations of pressure distribution and
airfoil shape in the inverse design problem.

To validate the adjoint code, the gradients of the
adjoint method were compared with those of the
finite difference method. Table 2 compares results
of adjoint method and the finite difference method.
It can be seen that a very good conformity of the
finite difference and adjoint gradients.

Table (2): Comparison of the adjoint and the finite
difference methods.

ol /om ol /ot

Adjoint Method 0.7454 | 0.1263
Finite Difference Method | 0.7446 | 0.1259
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9. 2 Drag Minimization Problem

In this case, we have implemented the method in
the constrained drag minimization. To evaluate the
performance of the adjoint method in design
problems with numerous design variables and also
to evaluate the effects of the adoption of the design
vector on the optimization results, the constrained
drag minimization is performed using two different
design vectors. In first test case, the surface points
are used as the design variables and in the second
test case, m and t are adopted as design variables.
The design is started by a NACAQ012 airfoil at 3.0
degrees angle of attack. The flow is transonic with
Mach number of 0.75. We performed computations
on a160x80 O-grid.

A. the optimization using the surface points
(Test Casel)

Table 3 represents the design results. The reduction
in the drag coefficient is considerable. We obtained
80.7 percents reduction in drag coefficient but lift
coefficient variations is very small (1.4 percents).

Table (3): Design results.

Initial Optimal
Cq 0.0317 0.0062

0.6027 0.5937
a 3 117

Figure 5 represents the convergence of the cost
function. Thisfigure shows that full convergence of
aerodynamic optimization is obtained after 260
design iterations. 49.65 percents reduction in drag
coefficient is attained after 30 design cycles. Only
1.74 percents drag reduction is obtained during 120
final cycles. Figure 6 shows the convergence
history of the norm of gradient during the design
process. According to thisfigure the trend is similar
to that of the cost function variations.

0.025

Cost Function (1)

0.015

Fig. (5): Convergence histories of the cost function
for the drag minimization problem.

Norm Of Gradian V ector

Design Cycle
Fig. (6): Convergence history of the norm of the
gradient vector for the drag minimization problem.

Figure 7 shows the geometry of initial and optimal
airfoils. The change in the upper surface and
around the trailing edge is considerable, whereas
the change in the lower surface is very small.
Figure 8 compares the initial and optimal pressure
contours. Figure 9 represents the initial and optimal
pressure coefficients. The figure shows that the
strong shock on the initial airfoil surface has been
strongly weakened and consequently the drag
coefficient has been reduced but the surface area
under the curve which is represented the value of
the lift coefficient has been remained constant and
consequently this coefficient is nearly the same for
both the initial and optimal airfoils. Figures 7 and 9
show that the upper surface of the optimal airfail
has approached to a flat geometry. The flat surface
has weakened the strength of the shock wave.
Further more the geometry of the airfoil at the
trailing edge has curved downward to compensate
the reduction of the lift coefficient due to
weakening the strength of the shock. It should be
noted that for propose of fixing the lift coefficient,
the angle of attack is considered as an extra design
variable.

015

Initiad (NACA0012)
77777 Optimal

01

20,05 F

01fF

-015%

Fig. (7): Comparison of NACAQ012 airfoil and
optimal airfoil for the drag minimization problem.
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Initial Pressure Contour
I )

HEEEENEEEEED |
n
=

Optimum Pressure Contour
I )

%5 0 05 1 15

(b)

Fig. (8): Pressure distribution contours for the drag
minimization problem. (&) Initial and (b) optimal

Initial
Optimal

0 052 0?4 X 056 058 i
Fig. (9): Comparison of pressure coefficient of
NACAO0012 and optimal airfoils for the drag
minimization problem.

B. the optimization using the relations of the
NACA 4-digit airfoil series (Test Casell)

Table 4 represents the design results. The reduction
in the drag coefficient is considerable. We obtained
83.28 percents reduction in drag coefficient but lift
coefficient variationsis very small (0.4 percents).

Table (4): Design results.

Initial Optimal

m 0.00 0.01072

t 0.12 0.0501

Cq 0.0317 0.0053

C 0.6027 0.6003
a 3 2.24

Figure 10 gives the variation of the cost function
with design cycle. For this problem, the design
cycle has 170 iterations. The drag coefficient
reduction is 81.92 percents during the first 80
design cycles. This coefficient has only 1.36
percents reduction the last 90 cycles.

Figure 11 shows the variation of the norm of
the gradient vector with design cycle. The trend is
similar to that of the cost function. Regarding to
Fig's. 10-11 the convergence of the optimization
program is evident.

Figure 12 gives the pressure coefficients on
upper and lower surface of initiadl and optimal
airfoils. It is seen that the location of the shock
wave has changed and its strength is reduced. But
the surface under the curve is remained constant
which reveals no change in lift coefficient. It is
clear that the drag coefficient reduction has been
achieved due to reduction of thickness, whereas
increase of the camber has led to increase the lift
coefficient. In fact the reduction of the lift due to
the reduction of the thickness has been
compensated by increase of the camber. More over
the variation of the angle of attack is such that the
lift coefficient remains constant.

Figure 13 shows the pressure contours around
the initia and optimal airfoils. Regarding to this
figure, the shock wave has moved toward the
leading edge and its strength is considerably
reduced.

It should be noted that the convergence rate of
the optimization program is strongly dependent on
the step size of o in optimization agorithm. If the
step size was taken larger, it increased the
convergence rate. But adoption of a larger step size
for a leads to increase in geometry parameters
(design variables) and decrease in accuracy of the
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calculated gradients. Sometimes larger step size
caused oscillatory behavior of the gradients. More
over adoption of smaller step size for a led to
increase in number of design cycles.

003}

0.025

Cost Function (1)
o
S

0.015

0.005 |

0 50 100 150
Design Cycle

Fig. (10): Convergence history of the cost function
for the drag minimization problem.

14
13
12
11

0.9
08
0.7
0.6
05

Norm of Gradient Vector

04
03
02
01

0 50 100 150
Design Cycle

Fig. (11): Convergence history of the norm of the
gradient for the drag minimization problem.

Initial
777777 Optimal

Fig. (12): Comparison of pressure coefficient and
geometry of NACA0012 and optimal airfoils for
the drag minimization problem.
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Fig. (13): Pressure distribution contours for the

drag minimization problem. (a) Initial and (b)
optimal.

It is known that the location and strength of a shock
wave in transonic regime is a main parameter in
drag calculation. Comparison of results of the
optimization problem using two different design
vectors, in on of them the surface points are
considered as design variables and in the other one,
the parameters of four digit NACA airfoil are
design variables (Fig's. 8 and 13 or Fig's. 9 and 12),
shows that when the surface points of the airfoil are
design variables the upper surface geometry
changes such that the strength of the shock wave is
reduced but the location of the shock wave has no
change, in fact the drag reduction is carried out via
the variation of the curvature only at region of the
shock wave. And the lift coefficient is recovered
via the increase in curvature only at the trailing
edge region. When the thickness and camber of
NACA four digits were considered as design
variables, the shock wave moves toward the leading
edge and the strength is reduced. In fact the drag
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reduction is carried out via reduction of the
thickness on all of the surface points and recovery
of thelift coefficient is achieved with increasing the
camber on al of the surface points.

Table 5 summarizes the required runtime and
number of adjoint and flow solvers to achieve the
convergence of the optimization program for the
constrained drag minimization problem. The used
computer specification is "Intel(R) Core(TM) Due
CPU T2450@ 2.00GHz, 1GB of RAM".

Table (5) Runtime and number of adjoint and flow
solvers of the drag minimization problem.

Test Casel Test Case i

Runtime 504 minutes | 425minutes
Ad'}lgi rrrl]tbéerolc\)/fers 440 340
F:\i)l\Jngslr vcéfrs 220 170
Dg‘i’gr‘]bgygr& 220 170

10. Conclusion

In this paper, we implemented the adjoint method
for the inverse pressure design and the constrained
drag minimization problems. In the inverse design
problem, values of camber and thickness (design
variables) were obtained successfully. The results
of the test case show that we can use the adjoint
approach as an efficient tool in arfoil inverse
design problem. To evaluate the performance of the
adjoint method in design problems with numerous
design variables and also to evaluate the effects of
the adoption of the design vector on the
optimization results, the minimization was
performed using two different design vectors. It
was shown that the mechanism and the trend of
drag reduction during the optimization process
strongly affected by the type of design vector. By
using this method, we can design high lift or low
drag airfoils according to the desired surface
pressure.
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